41. First Missing Positive
Description
Given an unsorted integer array nums
. Return the smallest positive integer that is not present in nums
.
You must implement an algorithm that runs in O(n)
time and uses O(1)
auxiliary space.
Example 1:
Input: nums = [1,2,0] Output: 3 Explanation: The numbers in the range [1,2] are all in the array.
Example 2:
Input: nums = [3,4,-1,1] Output: 2 Explanation: 1 is in the array but 2 is missing.
Example 3:
Input: nums = [7,8,9,11,12] Output: 1 Explanation: The smallest positive integer 1 is missing.
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
Solutions
Solution 1: In-place Swap
We assume the length of the array $nums$ is $n$, then the smallest positive integer must be in the range $[1, .., n + 1]$. We can traverse the array and swap each number $x$ to its correct position, that is, the position $x - 1$. If $x$ is not in the range $[1, n + 1]$, then we can ignore it.
After the traversal, we traverse the array again. If $i+1$ is not equal to $nums[i]$, then $i+1$ is the smallest positive integer we are looking for.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|