Tree
Breadth-First Search
Binary Tree
Description
Given the root
of a binary tree, return the zigzag level order traversal of its nodes' values . (i.e., from left to right, then right to left for the next level and alternate between).
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[20,9],[15,7]]
Example 2:
Input: root = [1]
Output: [[1]]
Example 3:
Input: root = []
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 2000]
.
-100 <= Node.val <= 100
Solutions
Solution 1: BFS
To implement zigzag level order traversal, we need to add a flag left
on the basis of level order traversal. This flag is used to mark the order of the node values in the current level. If left
is true
, the node values of the current level are stored in the result array ans
from left to right. If left
is false
, the node values of the current level are stored in the result array ans
from right to left.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def zigzagLevelOrder ( self , root : Optional [ TreeNode ]) -> List [ List [ int ]]:
ans = []
if root is None :
return ans
q = deque ([ root ])
ans = []
left = 1
while q :
t = []
for _ in range ( len ( q )):
node = q . popleft ()
t . append ( node . val )
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
ans . append ( t if left else t [:: - 1 ])
left ^= 1
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < List < Integer >> zigzagLevelOrder ( TreeNode root ) {
List < List < Integer >> ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
boolean left = true ;
while ( ! q . isEmpty ()) {
List < Integer > t = new ArrayList <> ();
for ( int n = q . size (); n > 0 ; -- n ) {
TreeNode node = q . poll ();
t . add ( node . val );
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
if ( ! left ) {
Collections . reverse ( t );
}
ans . add ( t );
left = ! left ;
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < vector < int >> zigzagLevelOrder ( TreeNode * root ) {
vector < vector < int >> ans ;
if ( ! root ) {
return ans ;
}
queue < TreeNode *> q {{ root }};
int left = 1 ;
while ( ! q . empty ()) {
vector < int > t ;
for ( int n = q . size (); n ; -- n ) {
auto node = q . front ();
q . pop ();
t . emplace_back ( node -> val );
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right