Skip to content

2349. Design a Number Container System

Description

Design a number container system that can do the following:

  • Insert or Replace a number at the given index in the system.
  • Return the smallest index for the given number in the system.

Implement the NumberContainers class:

  • NumberContainers() Initializes the number container system.
  • void change(int index, int number) Fills the container at index with the number. If there is already a number at that index, replace it.
  • int find(int number) Returns the smallest index for the given number, or -1 if there is no index that is filled by number in the system.

 

Example 1:

Input
["NumberContainers", "find", "change", "change", "change", "change", "find", "change", "find"]
[[], [10], [2, 10], [1, 10], [3, 10], [5, 10], [10], [1, 20], [10]]
Output
[null, -1, null, null, null, null, 1, null, 2]

Explanation
NumberContainers nc = new NumberContainers();
nc.find(10); // There is no index that is filled with number 10. Therefore, we return -1.
nc.change(2, 10); // Your container at index 2 will be filled with number 10.
nc.change(1, 10); // Your container at index 1 will be filled with number 10.
nc.change(3, 10); // Your container at index 3 will be filled with number 10.
nc.change(5, 10); // Your container at index 5 will be filled with number 10.
nc.find(10); // Number 10 is at the indices 1, 2, 3, and 5. Since the smallest index that is filled with 10 is 1, we return 1.
nc.change(1, 20); // Your container at index 1 will be filled with number 20. Note that index 1 was filled with 10 and then replaced with 20. 
nc.find(10); // Number 10 is at the indices 2, 3, and 5. The smallest index that is filled with 10 is 2. Therefore, we return 2.

 

Constraints:

  • 1 <= index, number <= 109
  • At most 105 calls will be made in total to change and find.

Solutions

Solution 1: Hash Table + Ordered Set

We use a hash table $d$ to record the mapping relationship between indices and numbers, and another hash table $g$ to record the set of indices corresponding to each number. Here, we can use an ordered set to store the indices, which allows us to conveniently find the smallest index.

When calling the change method, we first check if the index already exists. If it does, we remove the original number from its corresponding index set and then add the new number to the corresponding index set. The time complexity is $O(\log n)$.

When calling the find method, we simply return the first element of the index set corresponding to the number. The time complexity is $O(1)$.

The space complexity is $O(n)$, where $n$ is the number of numbers.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from sortedcontainers import SortedSet


class NumberContainers:

    def __init__(self):
        self.d = {}
        self.g = defaultdict(SortedSet)

    def change(self, index: int, number: int) -> None:
        if index in self.d:
            old_number = self.d[index]
            self.g[old_number].remove(index)
        self.d[index] = number
        self.g[number].add(index)

    def find(self, number: int) -> int:
        ids = self.g[number]
        return ids[0] if ids else -1


# Your NumberContainers object will be instantiated and called as such:
# obj = NumberContainers()
# obj.change(index,number)
# param_2 = obj.find(number)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class NumberContainers {
    private Map<Integer, Integer> d = new HashMap<>();
    private Map<Integer, TreeSet<Integer>> g = new HashMap<>();

    public NumberContainers() {
    }

    public void change(int index, int number) {
        if (d.containsKey(index)) {
            int oldNumber = d.get(index);
            g.get(oldNumber).remove(index);
        }
        d.put(index, number);
        g.computeIfAbsent(number, k -> new TreeSet<>()).add(index);
    }

    public int find(int number) {
        var ids = g.get(number);
        return ids == null || ids.isEmpty() ? -1 : ids.first();
    }
}

/**
 * Your NumberContainers object will be instantiated and called as such:
 * NumberContainers obj = new NumberContainers();
 * obj.change(index,number);
 * int param_2 = obj.find(number);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class NumberContainers {
public:
    NumberContainers() {
    }

    void change(int index, int number) {
        if (d.contains(index)) {
            int oldNumber = d[index];
            g[oldNumber].erase(index);
            if (g[oldNumber].empty()) {
                g.erase(oldNumber);
            }
        }
        d[index] = number;
        g[number].insert(index);
    }

    int find(int number) {
        return g.contains(number) ? *g[number].begin() : -1;
    }

private:
    unordered_map<int, int> d;
    unordered_map<int, set<int>> g;
};

/**
 * Your NumberContainers object will be instantiated and called as such:
 * NumberContainers* obj = new NumberContainers();
 * obj->change(index,number);
 * int param_2 = obj->find(number);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
type NumberContainers struct {