Skip to content

407. Trapping Rain Water II

Description

Given an m x n integer matrix heightMap representing the height of each unit cell in a 2D elevation map, return the volume of water it can trap after raining.

 

Example 1:

Input: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]
Output: 4
Explanation: After the rain, water is trapped between the blocks.
We have two small ponds 1 and 3 units trapped.
The total volume of water trapped is 4.

Example 2:

Input: heightMap = [[3,3,3,3,3],[3,2,2,2,3],[3,2,1,2,3],[3,2,2,2,3],[3,3,3,3,3]]
Output: 10

 

Constraints:

  • m == heightMap.length
  • n == heightMap[i].length
  • 1 <= m, n <= 200
  • 0 <= heightMap[i][j] <= 2 * 104

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def trapRainWater(self, heightMap: List[List[int]]) -> int:
        m, n = len(heightMap), len(heightMap[0])
        vis = [[False] * n for _ in range(m)]
        pq = []
        for i in range(m):
            for j in range(n):
                if i == 0 or i == m - 1 or j == 0 or j == n - 1:
                    heappush(pq, (heightMap[i][j], i, j))
                    vis[i][j] = True
        ans = 0
        dirs = (-1, 0, 1, 0, -1)
        while pq:
            h, i, j = heappop(pq)
            for a, b in pairwise(dirs):
                x, y = i + a, j + b
                if x >= 0 and x < m and y >= 0 and y < n and not vis[x][y]:
                    ans += max(0, h - heightMap[x][y])
                    vis[x][y] = True
                    heappush(pq, (max(h, heightMap[x][y]), x, y))
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
    public int trapRainWater(int[][] heightMap) {
        int m = heightMap.length, n = heightMap[0].length;
        boolean[][] vis = new boolean[m][n];
        PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
                    pq.offer(new int[] {heightMap[i][j], i, j});
                    vis[i][j] = true;
                }
            }
        }
        int ans = 0;
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!pq.isEmpty()) {
            var p = pq.poll();
            for (int k = 0; k < 4; ++k) {
                int x = p[1] + dirs[k], y = p[2] + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y]) {
                    ans += Math.max(0, p[0] - heightMap[x][y]);
                    vis[x][y] = true;
                    pq.offer(new int[] {Math.max(p[0], heightMap[x][y]), x, y});
                }
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9