Skip to content

18. 4Sum

Description

Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:

  • 0 <= a, b, c, d < n
  • a, b, c, and d are distinct.
  • nums[a] + nums[b] + nums[c] + nums[d] == target

You may return the answer in any order.

 

Example 1:

Input: nums = [1,0,-1,0,-2,2], target = 0
Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

Example 2:

Input: nums = [2,2,2,2,2], target = 8
Output: [[2,2,2,2]]

 

Constraints:

  • 1 <= nums.length <= 200
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109

Solutions

Solution 1: Sorting + Double Pointers

We notice that the problem requires us to find non-repeating quadruplets. Therefore, we can first sort the array, which makes it easy to skip duplicate elements.

Next, we enumerate the first two elements of the quadruplet, $nums[i]$ and $nums[j]$, where $i \lt j$. During the enumeration process, we skip duplicate $nums[i]$ and $nums[j]$. Then, we use two pointers $k$ and $l$ to point to the two ends behind $nums[i]$ and $nums[j]$. Let $x = nums[i] + nums[j] + nums[k] + nums[l]$, we compare $x$ with $target$ and perform the following operations:

  • If $x \lt target$, then update $k = k + 1$ to get a larger $x$;
  • If $x \gt target$, then update $l = l - 1$ to get a smaller $x$;
  • Otherwise, it means that a quadruplet $(nums[i], nums[j], nums[k], nums[l])$ is found. Add it to the answer, then we update the pointers $k$ and $l$, and skip all duplicate elements to prevent the answer from containing duplicate quadruplets, and continue to find the next quadruplet.

The time complexity is $O(n^3)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        n = len(nums)
        ans = []
        if n < 4:
            return ans
        nums.sort()
        for i in range(n - 3):
            if i and nums[i] == nums[i - 1]:
                continue
            for j in range(i + 1, n - 2):
                if j > i + 1 and nums[j] == nums[j - 1]:
                    continue
                k, l = j + 1, n - 1
                while k < l:
                    x = nums[i] + nums[j] + nums[k] + nums[l]
                    if x < target:
                        k += 1
                    elif x > target:
                        l -= 1
                    else:
                        ans.append([nums[i], nums[j], nums[k], nums[l]])
                        k, l = k + 1, l - 1
                        while k < l and nums[k] == nums[k - 1]:
                            k += 1
                        while k < l and nums[l] == nums[l + 1]:
                            l -= 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        int n = nums.length;
        List<List<Integer>> ans = new ArrayList<>();
        if (n < 4) {
            return ans;
        }
        Arrays.sort(nums);
        for (int i = 0; i < n - 3; ++i) {
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            for (int j = i + 1; j < n - 2; ++j) {
                if (j > i + 1 && nums[j] == nums[j - 1]) {
                    continue;
                }
                int k = j + 1, l = n - 1;
                while (k < l) {
                    long x = (long) nums[i] + nums[j] + nums[k] + nums[l];
                    if (x < target) {
                        ++k;
                    } else if (x > target) {
                        --l;
                    } else {
                        ans.add(List.of(nums[i], nums[j], nums[k++], nums[l--]));
                        while (k < l && nums[k] == nums[k - 1]) {
                            ++k;
                        }
                        while (k < l && nums[l] == nums[l + 1]) {