788. Rotated Digits
Description
An integer x
is a good if after rotating each digit individually by 180 degrees, we get a valid number that is different from x
. Each digit must be rotated - we cannot choose to leave it alone.
A number is valid if each digit remains a digit after rotation. For example:
0
,1
, and8
rotate to themselves,2
and5
rotate to each other (in this case they are rotated in a different direction, in other words,2
or5
gets mirrored),6
and9
rotate to each other, and- the rest of the numbers do not rotate to any other number and become invalid.
Given an integer n
, return the number of good integers in the range [1, n]
.
Example 1:
Input: n = 10 Output: 4 Explanation: There are four good numbers in the range [1, 10] : 2, 5, 6, 9. Note that 1 and 10 are not good numbers, since they remain unchanged after rotating.
Example 2:
Input: n = 1 Output: 0
Example 3:
Input: n = 2 Output: 1
Constraints:
1 <= n <= 104
Solutions
Solution 1: Direct Enumeration
An intuitive and effective approach is to directly enumerate each number in $[1,2,..n]$ and determine whether it is a good number. If it is a good number, increment the answer by one.
The key to the problem is how to determine whether a number $x$ is a good number. The logic is as follows:
We first use an array $d$ of length 10 to record the rotated digits corresponding to each valid digit. In this problem, the valid digits are $[0, 1, 8, 2, 5, 6, 9]$, which correspond to the rotated digits $[0, 1, 8, 5, 2, 9, 6]$ respectively. If a digit is not valid, we set the corresponding rotated digit to $-1$.
Then, we traverse each digit $v$ of the number $x$. If $v$ is not a valid digit, it means $x$ is not a good number, and we directly return $\textit{false}$. Otherwise, we add the rotated digit $d[v]$ corresponding to the digit $v$ to $y$. Finally, we check whether $x$ and $y$ are equal. If they are not equal, it means $x$ is a good number, and we return $\textit{true}$.
The time complexity is $O(n \times \log n)$, where $n$ is the given number. The space complexity is $O(1)$.
Similar problems:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|