1712. Ways to Split Array Into Three Subarrays
Description
A split of an integer array is good if:
- The array is split into three non-empty contiguous subarrays - named
left
,mid
,right
respectively from left to right. - The sum of the elements in
left
is less than or equal to the sum of the elements inmid
, and the sum of the elements inmid
is less than or equal to the sum of the elements inright
.
Given nums
, an array of non-negative integers, return the number of good ways to split nums
. As the number may be too large, return it modulo 109 + 7
.
Example 1:
Input: nums = [1,1,1] Output: 1 Explanation: The only good way to split nums is [1] [1] [1].
Example 2:
Input: nums = [1,2,2,2,5,0] Output: 3 Explanation: There are three good ways of splitting nums: [1] [2] [2,2,5,0] [1] [2,2] [2,5,0] [1,2] [2,2] [5,0]
Example 3:
Input: nums = [3,2,1] Output: 0 Explanation: There is no good way to split nums.
Constraints:
3 <= nums.length <= 105
0 <= nums[i] <= 104
Solutions
Solution 1: Prefix Sum + Binary Search
First, we preprocess the prefix sum array $s$ of the array $nums$, where $s[i]$ represents the sum of the first $i+1$ elements of the array $nums$.
Since all elements of the array $nums$ are non-negative integers, the prefix sum array $s$ is a monotonically increasing array.
We enumerate the index $i$ that the left
subarray can reach in the range $[0,..n-2)$, and then use the monotonically increasing characteristic of the prefix sum array to find the reasonable range of the mid
subarray split by binary search, denoted as $[j, k)$, and accumulate the number of schemes $k-j$.
In the binary search details, the subarray split must satisfy $s[j] \geq s[i]$ and $s[n - 1] - s[k] \geq s[k] - s[i]$. That is, $s[j] \geq s[i]$ and $s[k] \leq \frac{s[n - 1] + s[i]}{2}$.
Finally, return the number of schemes modulo $10^9+7$.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$.
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|