1829. Maximum XOR for Each Query
Description
You are given a sorted array nums
of n
non-negative integers and an integer maximumBit
. You want to perform the following query n
times:
- Find a non-negative integer
k < 2maximumBit
such thatnums[0] XOR nums[1] XOR ... XOR nums[nums.length-1] XOR k
is maximized.k
is the answer to theith
query. - Remove the last element from the current array
nums
.
Return an array answer
, where answer[i]
is the answer to the ith
query.
Example 1:
Input: nums = [0,1,1,3], maximumBit = 2 Output: [0,3,2,3] Explanation: The queries are answered as follows: 1st query: nums = [0,1,1,3], k = 0 since 0 XOR 1 XOR 1 XOR 3 XOR 0 = 3. 2nd query: nums = [0,1,1], k = 3 since 0 XOR 1 XOR 1 XOR 3 = 3. 3rd query: nums = [0,1], k = 2 since 0 XOR 1 XOR 2 = 3. 4th query: nums = [0], k = 3 since 0 XOR 3 = 3.
Example 2:
Input: nums = [2,3,4,7], maximumBit = 3 Output: [5,2,6,5] Explanation: The queries are answered as follows: 1st query: nums = [2,3,4,7], k = 5 since 2 XOR 3 XOR 4 XOR 7 XOR 5 = 7. 2nd query: nums = [2,3,4], k = 2 since 2 XOR 3 XOR 4 XOR 2 = 7. 3rd query: nums = [2,3], k = 6 since 2 XOR 3 XOR 6 = 7. 4th query: nums = [2], k = 5 since 2 XOR 5 = 7.
Example 3:
Input: nums = [0,1,2,2,5,7], maximumBit = 3 Output: [4,3,6,4,6,7]
Constraints:
nums.length == n
1 <= n <= 105
1 <= maximumBit <= 20
0 <= nums[i] < 2maximumBit
nums
βββ is sorted in ascending order.
Solutions
Solution 1: Bitwise Operation + Enumeration
First, we preprocess the XOR sum $xs$ of the array nums
, i.e., $xs=nums[0] \oplus nums[1] \oplus \cdots \oplus nums[n-1]$.
Next, we enumerate each element $x$ in the array nums
from back to front. The current XOR sum is $xs$. We need to find a number $k$ such that the value of $xs \oplus k$ is as large as possible, and $k \lt 2^{maximumBit}$.
That is to say, we start from the $maximumBit - 1$ bit of $xs$ and enumerate to the lower bit. If a bit of $xs$ is $0$, then we set the corresponding bit of $k$ to $1$. Otherwise, we set the corresponding bit of $k$ to $0$. In this way, the final $k$ is the answer to each query. Then, we update $xs$ to $xs \oplus x$ and continue to enumerate the next element.
The time complexity is $O(n \times m)$, where $n$ and $m$ are the values of the array nums
and maximumBit
respectively. Ignoring the space consumption of the answer, the space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|