2737. Find the Closest Marked Node π
Description
You are given a positive integer n
which is the number of nodes of a 0-indexed directed weighted graph and a 0-indexed 2D array edges
where edges[i] = [ui, vi, wi]
indicates that there is an edge from node ui
to node vi
with weight wi
.
You are also given a node s
and a node array marked
; your task is to find the minimum distance from s
to any of the nodes in marked
.
Return an integer denoting the minimum distance from s
to any node in marked
or -1
if there are no paths from s to any of the marked nodes.
Example 1:
Input: n = 4, edges = [[0,1,1],[1,2,3],[2,3,2],[0,3,4]], s = 0, marked = [2,3] Output: 4 Explanation: There is one path from node 0 (the green node) to node 2 (a red node), which is 0->1->2, and has a distance of 1 + 3 = 4. There are two paths from node 0 to node 3 (a red node), which are 0->1->2->3 and 0->3, the first one has a distance of 1 + 3 + 2 = 6 and the second one has a distance of 4. The minimum of them is 4.
Example 2:
Input: n = 5, edges = [[0,1,2],[0,2,4],[1,3,1],[2,3,3],[3,4,2]], s = 1, marked = [0,4] Output: 3 Explanation: There are no paths from node 1 (the green node) to node 0 (a red node). There is one path from node 1 to node 4 (a red node), which is 1->3->4, and has a distance of 1 + 2 = 3. So the answer is 3.
Example 3:
Input: n = 4, edges = [[0,1,1],[1,2,3],[2,3,2]], s = 3, marked = [0,1] Output: -1 Explanation: There are no paths from node 3 (the green node) to any of the marked nodes (the red nodes), so the answer is -1.
Constraints:
2 <= n <= 500
1 <= edges.length <= 104
edges[i].length = 3
0 <= edges[i][0], edges[i][1] <= n - 1
1 <= edges[i][2] <= 106
1 <= marked.length <= n - 1
0 <= s, marked[i] <= n - 1
s != marked[i]
marked[i] != marked[j]
for everyi != j
- The graph might have repeated edges.
- The graph is generated such that it has no self-loops.
Solutions
Solution 1: Dijkstra's Algorithm
First, we construct an adjacency matrix $g$ based on the edge information provided in the problem, where $g[i][j]$ represents the distance from node $i$ to node $j$. If such an edge does not exist, then $g[i][j]$ is positive infinity.
Then, we can use Dijkstra's algorithm to find the shortest distance from the starting point $s$ to all nodes, denoted as $dist$.
Finally, we traverse all the marked nodes and find the marked node with the smallest distance. If the distance is positive infinity, we return $-1$.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the number of nodes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|