1458. Max Dot Product of Two Subsequences
Description
Given two arrays nums1
and nums2
.
Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5]
is a subsequence of [1,2,3,4,5]
while [1,5,3]
is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6] Output: 18 Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2. Their dot product is (2*3 + (-2)*(-6)) = 18.
Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7] Output: 21 Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2. Their dot product is (3*7) = 21.
Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1] Output: -1 Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2. Their dot product is -1.
Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ to represent the maximum dot product of two subsequences formed by the first $i$ elements of $\textit{nums1}$ and the first $j$ elements of $\textit{nums2}$. Initially, $f[i][j] = -\infty$.
For $f[i][j]$, we have the following cases:
- Do not select $\textit{nums1}[i-1]$ or do not select $\textit{nums2}[j-1]$, i.e., $f[i][j] = \max(f[i-1][j], f[i][j-1])$;
- Select $\textit{nums1}[i-1]$ and $\textit{nums2}[j-1]$, i.e., $f[i][j] = \max(f[i][j], \max(0, f[i-1][j-1]) + \textit{nums1}[i-1] \times \textit{nums2}[j-1])$.
The final answer is $f[m][n]$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of the arrays $\textit{nums1}$ and $\textit{nums2}$, respectively.
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|