529. Minesweeper
Description
Let's play the minesweeper game (Wikipedia, online game)!
You are given an m x n
char matrix board
representing the game board where:
'M'
represents an unrevealed mine,'E'
represents an unrevealed empty square,'B'
represents a revealed blank square that has no adjacent mines (i.e., above, below, left, right, and all 4 diagonals),- digit (
'1'
to'8'
) represents how many mines are adjacent to this revealed square, and 'X'
represents a revealed mine.
You are also given an integer array click
where click = [clickr, clickc]
represents the next click position among all the unrevealed squares ('M'
or 'E'
).
Return the board after revealing this position according to the following rules:
- If a mine
'M'
is revealed, then the game is over. You should change it to'X'
. - If an empty square
'E'
with no adjacent mines is revealed, then change it to a revealed blank'B'
and all of its adjacent unrevealed squares should be revealed recursively. - If an empty square
'E'
with at least one adjacent mine is revealed, then change it to a digit ('1'
to'8'
) representing the number of adjacent mines. - Return the board when no more squares will be revealed.
Example 1:
Input: board = [["E","E","E","E","E"],["E","E","M","E","E"],["E","E","E","E","E"],["E","E","E","E","E"]], click = [3,0] Output: [["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
Example 2:
Input: board = [["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]], click = [1,2] Output: [["B","1","E","1","B"],["B","1","X","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 50
board[i][j]
is either'M'
,'E'
,'B'
, or a digit from'1'
to'8'
.click.length == 2
0 <= clickr < m
0 <= clickc < n
board[clickr][clickc]
is either'M'
or'E'
.
Solutions
Solution 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|