2006. Count Number of Pairs With Absolute Difference K
Description
Given an integer array nums
and an integer k
, return the number of pairs (i, j)
where i < j
such that |nums[i] - nums[j]| == k
.
The value of |x|
is defined as:
x
ifx >= 0
.-x
ifx < 0
.
Example 1:
Input: nums = [1,2,2,1], k = 1 Output: 4 Explanation: The pairs with an absolute difference of 1 are: - [1,2,2,1] - [1,2,2,1] - [1,2,2,1] - [1,2,2,1]
Example 2:
Input: nums = [1,3], k = 3 Output: 0 Explanation: There are no pairs with an absolute difference of 3.
Example 3:
Input: nums = [3,2,1,5,4], k = 2 Output: 3 Explanation: The pairs with an absolute difference of 2 are: - [3,2,1,5,4] - [3,2,1,5,4] - [3,2,1,5,4]
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
1 <= k <= 99
Solutions
Solution 1: Brute Force Enumeration
We notice that the length of the array $nums$ does not exceed $200$, so we can enumerate all pairs $(i, j)$, where $i < j$, and check if $|nums[i] - nums[j]|$ equals $k$. If it does, we increment the answer by one.
Finally, we return the answer.
The time complexity is $O(n^2)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.
1 2 3 4 5 6 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 |