You are given an array prices where prices[i] is the price of a given stock on the ith day, and an integer fee representing a transaction fee.
Find the maximum profit you can achieve. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction.
Note:
You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
The transaction fee is only charged once for each stock purchase and sale.
Example 1:
Input: prices = [1,3,2,8,4,9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Example 2:
Input: prices = [1,3,7,5,10,3], fee = 3
Output: 6
Constraints:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
Solutions
Solution 1: Memoization
We design a function $dfs(i, j)$, which represents the maximum profit that can be obtained starting from day $i$ with state $j$. Here, $j$ can take the values $0$ and $1$, representing not holding and holding a stock, respectively. The answer is $dfs(0, 0)$.
The execution logic of the function $dfs(i, j)$ is as follows:
If $i \geq n$, there are no more stocks to trade, so we return $0$.
Otherwise, we can choose not to trade, in which case $dfs(i, j) = dfs(i + 1, j)$. We can also choose to trade stocks. If $j \gt 0$, it means that we currently hold a stock and can sell it. In this case, $dfs(i, j) = prices[i] + dfs(i + 1, 0) - fee$. If $j = 0$, it means that we currently do not hold a stock and can buy one. In this case, $dfs(i, j) = -prices[i] + dfs(i + 1, 1)$. We take the maximum value as the return value of the function $dfs(i, j)$.
The answer is $dfs(0, 0)$.
To avoid redundant calculations, we use memoization to record the return value of $dfs(i, j)$ in an array $f$. If $f[i][j]$ is not equal to $-1$, it means that we have already calculated it, so we can directly return $f[i][j]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $prices$.
We define $f[i][j]$ as the maximum profit that can be obtained up to day $i$ with state $j$. Here, $j$ can take the values $0$ and $1$, representing not holding and holding a stock, respectively. We initialize $f[0][0] = 0$ and $f[0][1] = -prices[0]$.
When $i \geq 1$, if we do not hold a stock at the current day, then $f[i][0]$ can be obtained by transitioning from $f[i - 1][0]$ and $f[i - 1][1] + prices[i] - fee$, i.e., $f[i][0] = \max(f[i - 1][0], f[i - 1][1] + prices[i] - fee)$. If we hold a stock at the current day, then $f[i][1]$ can be obtained by transitioning from $f[i - 1][1]$ and $f[i - 1][0] - prices[i]$, i.e., $f[i][1] = \max(f[i - 1][1], f[i - 1][0] - prices[i])$. The final answer is $f[n - 1][0]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $prices$.
We notice that the transition of the state $f[i][]$ only depends on $f[i - 1][]$ and $f[i - 2][]$. Therefore, we can use two variables $f_0$ and $f_1$ to replace the array $f$, reducing the space complexity to $O(1)$.