Breadth-First Search
Array
Dynamic Programming
Matrix
Description
Given an m x n
binary matrix mat
, return the distance of the nearest 0
for each cell .
The distance between two cells sharing a common edge is 1
.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j]
is either 0
or 1
.
There is at least one 0
in mat
.
Note: This question is the same as 1765: https://leetcode.com/problems/map-of-highest-peak/
Solutions
Solution 1: BFS
We create a matrix $\textit{ans}$ of the same size as $\textit{mat}$ and initialize all elements to $-1$.
Then, we traverse $\textit{mat}$, adding the coordinates $(i, j)$ of all $0$ elements to the queue $\textit{q}$, and setting $\textit{ans}[i][j]$ to $0$.
Next, we use Breadth-First Search (BFS), removing an element $(i, j)$ from the queue and traversing its four directions. If the element in that direction $(x, y)$ satisfies $0 \leq x < m$, $0 \leq y < n$ and $\textit{ans}[x][y] = -1$, then we set $\textit{ans}[x][y]$ to $\textit{ans}[i][j] + 1$ and add $(x, y)$ to the queue $\textit{q}$.
Finally, we return $\textit{ans}$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns in the matrix $\textit{mat}$, respectively.
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 class Solution :
def updateMatrix ( self , mat : List [ List [ int ]]) -> List [ List [ int ]]:
m , n = len ( mat ), len ( mat [ 0 ])
ans = [[ - 1 ] * n for _ in range ( m )]
q = deque ()
for i , row in enumerate ( mat ):
for j , x in enumerate ( row ):
if x == 0 :
ans [ i ][ j ] = 0
q . append (( i , j ))
dirs = ( - 1 , 0 , 1 , 0 , - 1 )
while q :
i , j = q . popleft ()
for a , b in pairwise ( dirs ):
x , y = i + a , j + b
if 0 <= x < m and 0 <= y < n and ans [ x ][ y ] == - 1 :
ans [ x ][ y ] = ans [ i ][ j ] + 1
q . append (( x , y ))
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 class Solution {
public int [][] updateMatrix ( int [][] mat ) {
int m = mat . length , n = mat [ 0 ] . length ;
int [][] ans = new int [ m ][ n ] ;
for ( int [] row : ans ) {
Arrays . fill ( row , - 1 );
}
Deque < int []> q = new ArrayDeque <> ();
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( mat [ i ][ j ] == 0 ) {
q . offer ( new int [] { i , j });
ans [ i ][ j ] = 0 ;
}
}
}
int [] dirs = { - 1 , 0 , 1 , 0 , - 1 };
while ( ! q . isEmpty ()) {
int [] p = q . poll ();
int i = p [ 0 ] , j = p [ 1 ] ;
for ( int k = 0 ; k < 4 ; ++ k ) {
int x = i + dirs [ k ] , y = j + dirs [ k + 1 ] ;
if ( x >= 0 && x < m && y >= 0 && y < n && ans [ x ][ y ] == - 1 ) {
ans [ x ][ y ] = ans [ i ][ j ] + 1 ;
q . offer ( new int [] { x , y });
}
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 class Solution {
public :
vector < vector < int >> updateMatrix ( vector < vector < int >>& mat ) {
int m = mat . size (), n = mat [ 0 ]. size ();
vector < vector < int >> ans ( m , vector < int > ( n , -1 ));
queue < pair < int , int >> q ;
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( mat [ i ][ j ] == 0 ) {
ans [ i ][ j ] = 0 ;
q . emplace ( i , j );
}
}
}
vector < int > dirs = { -1 , 0 , 1 , 0 , -1 };
while ( ! q . empty ()) {
auto p = q . front ();
q . pop ();
for ( int i = 0 ; i < 4 ; ++ i ) {
int x = p . first + dirs [ i ];
int y = p . second + dirs [ i + 1 ];
if ( x >= 0 && x < m && y >= 0 && y < n && ans [ x ][ y ] == -1 ) {
ans [ x ][ y ] = ans [ p . first ][ p . second ] + 1 ;
q . emplace ( x , y );
}
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 func updateMatrix ( mat [][] int ) [][] int {
m , n := len ( mat ), len ( mat [ 0 ])
ans := make ([][] int , m )
for i := range ans {
ans [ i ] = make ([] int , n )
for j := range ans [ i ] {
ans [ i ][ j ] = - 1
}
}
type pair struct { x , y int }
var q [] pair
for i , row := range mat {
for j , v := range row {
if v == 0 {
ans [ i ][ j ] = 0
q = append ( q , pair { i , j })
}
}
}
dirs := [] int { - 1 , 0 , 1 , 0 , - 1 }
for len ( q ) > 0 {
p := q [ 0 ]
q = q [ 1 :]
for i := 0 ; i < 4 ; i ++ {
x , y := p . x + dirs [ i ], p . y + dirs [ i + 1 ]
if x >= 0 && x < m && y >= 0 && y < n && ans [ x ][ y ] == - 1 {
ans [ x ][ y ] = ans [ p . x ][ p . y ] + 1
q = append ( q , pair { x , y })
}
}
}
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 function updateMatrix ( mat : number [][]) : number [][] {
const [ m , n ] = [ mat . length , mat [ 0 ]. length ];
const ans : number [][] = Array . from ({ length : m }, () => Array . from ({ length : n }, () => - 1 ));
const q : [ number , number ][] = [];
for ( let i = 0 ; i < m ; ++ i ) {
for ( let j = 0 ; j < n ; ++ j ) {
if ( mat [ i ][ j ] === 0 ) {
q . push ([ i , j ]);
ans [ i ][ j ] = 0 ;
}
}
}
const dirs : number [] = [ - 1 , 0 , 1 , 0 , - 1 ];
for ( const [ i , j ] of q ) {
for ( let k = 0 ; k < 4 ; ++ k ) {
const [ x , y ] = [ i + dirs [ k ], j + dirs [ k + 1 ]];
if ( x >= 0 && x < m && y >= 0 && y < n && ans [ x ][ y ] === - 1 ) {
ans [ x ][ y ] = ans [ i ][ j ] + 1 ;
q . push ([ x , y ]);
}
}
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 use std :: collections :: VecDeque ;
impl Solution {
pub fn update_matrix ( mat : Vec < Vec < i32 >> ) -> Vec < Vec < i32 >> {
let m = mat . len ();
let n = mat [ 0 ]. len ();
let mut ans = vec! [ vec! [ - 1 ; n ]; m ];
let mut q = VecDeque :: new ();
for i in 0 .. m {
for j in 0 .. n {
if mat [ i ][ j ] == 0 {
q . push_back (( i , j ));
ans [ i ][ j ] = 0 ;
}
}
}
let dirs = [ - 1 , 0 , 1 , 0 , - 1 ];
while let Some (( i , j )) = q . pop_front () {
for k in 0 .. 4 {
let x = i as isize + dirs [ k ];
let y = j as isize + dirs [ k + 1 ];
if x >= 0 && x < m as isize && y >= 0 && y < n as isize {
let x = x as usize ;
let y = y as usize ;
if ans [ x ][ y ] == - 1 {
ans [ x ][ y ] = ans [ i ][ j ] + 1 ;
q . push_back (( x , y ));
}
}
}
}
ans
}
}
GitHub