Skip to content

47. Permutations II

Description

Given a collection of numbers, nums, that might contain duplicates, return all possible unique permutations in any order.

 

Example 1:

Input: nums = [1,1,2]
Output:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

Example 2:

Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

 

Constraints:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

Solutions

Solution 1: Sorting + Backtracking

We can first sort the array so that duplicate numbers are placed together, making it easier to remove duplicates.

Then, we design a function \(\textit{dfs}(i)\), which represents the current number to be placed at the \(i\)-th position. The specific implementation of the function is as follows:

  • If \(i = n\), it means we have filled all positions, add the current permutation to the answer array, and then return.
  • Otherwise, we enumerate the number \(nums[j]\) for the \(i\)-th position, where the range of \(j\) is \([0, n - 1]\). We need to ensure that \(nums[j]\) has not been used and is different from the previously enumerated number to ensure that the current permutation is not duplicated. If the conditions are met, we can place \(nums[j]\) and continue to recursively fill the next position by calling \(\textit{dfs}(i + 1)\). After the recursive call ends, we need to mark \(nums[j]\) as unused to facilitate subsequent enumeration.

In the main function, we first sort the array, then call \(\textit{dfs}(0)\) to start filling from the 0th position, and finally return the answer array.

The time complexity is \(O(n \times n!)\), and the space complexity is \(O(n)\). Here, \(n\) is the length of the array. We need to perform \(n!\) enumerations, and each enumeration requires \(O(n)\) time to check for duplicates. Additionally, we need a marker array to mark whether each position has been used, so the space complexity is \(O(n)\).

Similar problems:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def dfs(i: int):
            if i == n:
                ans.append(t[:])
                return
            for j in range(n):
                if vis[j] or (j and nums[j] == nums[j - 1] and not vis[j - 1]):
                    continue
                t[i] = nums[j]
                vis[j] = True
                dfs(i + 1)
                vis[j] = False

        n = len(nums)
        nums.sort()
        ans = []
        t = [0] * n
        vis = [False] * n
        dfs(0)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private int[] nums;
    private boolean[] vis;

    public List<List<Integer>> permuteUnique(int[] nums) {
        Arrays.sort(nums);
        this.nums = nums;
        vis = new boolean[nums.length];
        dfs(0);
        return ans;
    }

    private void dfs(int i) {
        if (i == nums.length) {
            ans.add(new ArrayList<>(t));
            return;
        }
        for (int j = 0; j < nums.length; ++j) {
            if (vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1])) {
                continue;
            }
            t.add(nums[j]);
            vis[j] = true;
            dfs(i + 1);
            vis[j] = false;
            t.remove(t.size() - 1);
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        ranges::sort(nums);
        int n = nums.size();
        vector<vector<int>> ans;
        vector<int> t(n);
        vector<bool> vis(n);
        auto dfs = [&](this auto&& dfs, int i) {
            if (i == n) {
                ans.emplace_back(t);
                return;
            }
            for (int j = 0; j < n; ++j) {
                if (vis[j] || (j && nums[j] == nums[j - 1] && !vis[j - 1])) {
                    continue;
                }
                t[i] = nums[j];
                vis[j] = true;
                dfs(i + 1);
                vis[j] = false;
            }
        };
        dfs(0);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func permuteUnique(nums []int) (ans [][]int) {
    slices.Sort(nums)
    n := len(nums)
    t := make([]int, n)
    vis := make([]bool, n)
    var dfs func(int)
    dfs = func(i int) {
        if i == n {
            ans = append(ans, slices.Clone(t))
            return
        }
        for j := 0; j < n; j++ {
            if vis[j] || (j > 0 && nums[j] == nums[j-1] && !vis[j-1]) {
                continue
            }
            vis[j] = true
            t[i] = nums[j]
            dfs(i + 1)
            vis[j] = false
        }
    }
    dfs(0)
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function permuteUnique(nums: number[]): number[][] {
    nums.sort((a, b) => a - b);
    const n = nums.length;
    const ans: number[][] = [];
    const t: number[] = Array(n);
    const vis: boolean[] = Array(n).fill(false);
    const dfs = (i: number) => {
        if (i === n) {
            ans.push(t.slice());
            return;
        }
        for (let j = 0; j < n; ++j) {
            if (vis[j] || (j > 0 && nums[j] === nums[j - 1] && !vis[j - 1])) {
                continue;
            }
            t[i] = nums[j];
            vis[j] = true;
            dfs(i + 1);
            vis[j] = false;
        }
    };
    dfs(0);
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
impl Solution {
    pub fn permute_unique(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
        nums.sort();
        let n = nums.len();
        let mut ans = Vec::new();
        let mut t = vec![0; n];
        let mut vis = vec![false; n];

        fn dfs(
            nums: &Vec<i32>,
            t: &mut Vec<i32>,
            vis: &mut Vec<bool>,
            ans: &mut Vec<Vec<i32>>,
            i: usize,
        ) {
            if i == nums.len() {
                ans.push(t.clone());
                return;
            }
            for j in 0..nums.len() {
                if vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1]) {
                    continue;
                }
                t[i] = nums[j];
                vis[j] = true;
                dfs(nums, t, vis, ans, i + 1);
                vis[j] = false;
            }
        }

        dfs(&nums, &mut t, &mut vis, &mut ans, 0);
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permuteUnique = function (nums) {
    nums.sort((a, b) => a - b);
    const n = nums.length;
    const ans = [];
    const t = Array(n);
    const vis = Array(n).fill(false);
    const dfs = i => {
        if (i === n) {
            ans.push(t.slice());
            return;
        }
        for (let j = 0; j < n; ++j) {
            if (vis[j] || (j > 0 && nums[j] === nums[j - 1] && !vis[j - 1])) {
                continue;
            }
            t[i] = nums[j];
            vis[j] = true;
            dfs(i + 1);
            vis[j] = false;
        }
    };
    dfs(0);
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public class Solution {
    private List<IList<int>> ans = new List<IList<int>>();
    private List<int> t = new List<int>();
    private int[] nums;
    private bool[] vis;

    public IList<IList<int>> PermuteUnique(int[] nums) {
        Array.Sort(nums);
        int n = nums.Length;
        vis = new bool[n];
        this.nums = nums;
        dfs(0);
        return ans;
    }

    private void dfs(int i) {
        if (i == nums.Length) {
            ans.Add(new List<int>(t));
            return;
        }
        for (int j = 0; j < nums.Length; ++j) {
            if (vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1])) {
                continue;
            }
            vis[j] = true;
            t.Add(nums[j]);
            dfs(i + 1);
            t.RemoveAt(t.Count - 1);
            vis[j] = false;
        }
    }
}

Comments