Skip to content

2737. Find the Closest Marked Node πŸ”’

Description

You are given a positive integer n which is the number of nodes of a 0-indexed directed weighted graph and a 0-indexed 2D array edges where edges[i] = [ui, vi, wi] indicates that there is an edge from node ui to node vi with weight wi.

You are also given a node s and a node array marked; your task is to find the minimum distance from s to any of the nodes in marked.

Return an integer denoting the minimum distance from s to any node in marked or -1 if there are no paths from s to any of the marked nodes.

 

Example 1:

Input: n = 4, edges = [[0,1,1],[1,2,3],[2,3,2],[0,3,4]], s = 0, marked = [2,3]
Output: 4
Explanation: There is one path from node 0 (the green node) to node 2 (a red node), which is 0->1->2, and has a distance of 1 + 3 = 4.
There are two paths from node 0 to node 3 (a red node), which are 0->1->2->3 and 0->3, the first one has a distance of 1 + 3 + 2 = 6 and the second one has a distance of 4.
The minimum of them is 4.

Example 2:

Input: n = 5, edges = [[0,1,2],[0,2,4],[1,3,1],[2,3,3],[3,4,2]], s = 1, marked = [0,4]
Output: 3
Explanation: There are no paths from node 1 (the green node) to node 0 (a red node).
There is one path from node 1 to node 4 (a red node), which is 1->3->4, and has a distance of 1 + 2 = 3.
So the answer is 3.

Example 3:

Input: n = 4, edges = [[0,1,1],[1,2,3],[2,3,2]], s = 3, marked = [0,1]
Output: -1
Explanation: There are no paths from node 3 (the green node) to any of the marked nodes (the red nodes), so the answer is -1.

 

Constraints:

  • 2 <= n <= 500
  • 1 <= edges.length <= 104
  • edges[i].length = 3
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • 1 <= edges[i][2] <= 106
  • 1 <= marked.length <= n - 1
  • 0 <= s, marked[i] <= n - 1
  • s != marked[i]
  • marked[i] != marked[j] for every i != j
  • The graph might have repeated edges.
  • The graph is generated such that it has no self-loops.

Solutions

Solution 1: Dijkstra's Algorithm

First, we construct an adjacency matrix $g$ based on the edge information provided in the problem, where $g[i][j]$ represents the distance from node $i$ to node $j$. If such an edge does not exist, then $g[i][j]$ is positive infinity.

Then, we can use Dijkstra's algorithm to find the shortest distance from the starting point $s$ to all nodes, denoted as $dist$.

Finally, we traverse all the marked nodes and find the marked node with the smallest distance. If the distance is positive infinity, we return $-1$.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the number of nodes.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution:
    def minimumDistance(
        self, n: int, edges: List[List[int]], s: int, marked: List[int]
    ) -> int:
        g = [[inf] * n for _ in range(n)]
        for u, v, w in edges:
            g[u][v] = min(g[u][v], w)
        dist = [inf] * n
        vis = [False] * n
        dist[s] = 0
        for _ in range(n):
            t = -1
            for j in range(n):
                if not vis[j] and (t == -1 or dist[t] > dist[j]):
                    t = j
            vis[t] = True
            for j in range(n):
                dist[j] = min(dist[j], dist[t] + g[t][j])
        ans = min(dist[i] for i in marked)
        return -1 if ans >= inf else ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
    public int minimumDistance(int n, List<List<Integer>> edges, int s, int[] marked) {
        final int inf = 1 << 29;
        int[][] g = new int[n][n];
        for (var e : g) {
            Arrays.fill(e, inf);
        }
        for (var e : edges) {
            int u = e.get(0), v = e.get(1), w = e.get(2);
            g[u][v] = Math.min(g[u][v], w);
        }
        int[] dist = new int[n];
        Arrays.fill(dist, inf);
        dist[s] = 0;
        boolean[] vis = new boolean[n];
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
            }
        }
        int ans = inf;
        for (int i : marked) {
            ans = Math.min(ans, dist[i]);
        }
        return ans >= inf ? -1 : ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
    int minimumDistance(int n, vector<vector<int>>& edges, int s, vector<int>& marked) {
        const int inf = 1 << 29;
        vector<vector<int>> g(n, vector<int>(n, inf));
        vector<int> dist(n, inf);
        dist[s] = 0;
        vector<bool> vis(n);
        for (auto& e : edges) {
            int u = e[0], v = e[1], w = e[2];
            g[u][v] = min(g[u][v], w);
        }
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = min(dist[j], dist[t] + g[t][j]);
            }
        }
        int ans = inf;
        for (int i : marked) {
            ans = min(ans, dist[i]);
        }
        return ans >= inf ? -1 : ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
func minimumDistance(n int, edges [][]int, s int, marked []int) int {
    const inf = 1 << 29
    g := make([][]int, n)
    dist := make([]int, n)
    for i := range g {
        g[i] = make([]int, n)
        for j := range g[i] {
            g[i][j] = inf
        }
        dist[i] = inf
    }
    dist[s] = 0
    for _, e := range edges {
        u, v, w := e[0], e[1], e[2]
        g[u][v] = min(g[u][v], w)
    }
    vis := make([]bool, n)
    for _ = range g {
        t := -1
        for j := 0; j < n; j++ {
            if !vis[j] && (t == -1 || dist[j] < dist[t]) {
                t = j
            }
        }
        vis[t] = true
        for j := 0; j < n; j++ {
            dist[j] = min(dist[j], dist[t]+g[t][j])
        }
    }
    ans := inf
    for _, i := range marked {
        ans = min(ans, dist[i])
    }
    if ans >= inf {
        return -1
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
function minimumDistance(n: number, edges: number[][], s: number, marked: number[]): number {
    const inf = 1 << 29;
    const g: number[][] = Array(n)
        .fill(0)
        .map(() => Array(n).fill(inf));
    const dist: number[] = Array(n).fill(inf);
    const vis: boolean[] = Array(n).fill(false);
    for (const [u, v, w] of edges) {
        g[u][v] = Math.min(g[u][v], w);
    }
    dist[s] = 0;
    for (let i = 0; i < n; ++i) {
        let t = -1;
        for (let j = 0; j < n; ++j) {
            if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                t = j;
            }
        }
        vis[t] = true;
        for (let j = 0; j < n; ++j) {
            dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
        }
    }
    let ans = inf;
    for (const i of marked) {
        ans = Math.min(ans, dist[i]);
    }
    return ans >= inf ? -1 : ans;
}

Comments