Skip to content

2730. Find the Longest Semi-Repetitive Substring

Description

You are given a digit string s that consists of digits from 0 to 9.

A string is called semi-repetitive if there is at most one adjacent pair of the same digit. For example, "0010", "002020", "0123", "2002", and "54944" are semi-repetitive while the following are not: "00101022" (adjacent same digit pairs are 00 and 22), and "1101234883" (adjacent same digit pairs are 11 and 88).

Return the length of the longest semi-repetitive substring of s.

 

Example 1:

Input: s = "52233"

Output: 4

Explanation:

The longest semi-repetitive substring is "5223". Picking the whole string "52233" has two adjacent same digit pairs 22 and 33, but at most one is allowed.

Example 2:

Input: s = "5494"

Output: 4

Explanation:

s is a semi-repetitive string.

Example 3:

Input: s = "1111111"

Output: 2

Explanation:

The longest semi-repetitive substring is "11". Picking the substring "111" has two adjacent same digit pairs, but at most one is allowed.

 

Constraints:

  • 1 <= s.length <= 50
  • '0' <= s[i] <= '9'

Solutions

Solution 1: Two Pointers

We use two pointers to maintain a range $s[j..i]$ such that there is at most one pair of adjacent characters that are equal, initially $j = 0$, $i = 1$. Initialize the answer $ans = 1$.

We use $cnt$ to record the number of pairs of adjacent characters that are equal in the range. If $cnt > 1$, then we need to move the left pointer $j$ until $cnt \le 1$. Each time, we update the answer as $ans = \max(ans, i - j + 1)$.

The time complexity is $O(n)$, where $n$ is the length of the string. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def longestSemiRepetitiveSubstring(self, s: str) -> int:
        ans, n = 1, len(s)
        cnt = j = 0
        for i in range(1, n):
            cnt += s[i] == s[i - 1]
            while cnt > 1:
                cnt -= s[j] == s[j + 1]
                j += 1
            ans = max(ans, i - j + 1)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
    public int longestSemiRepetitiveSubstring(String s) {
        int ans = 1, n = s.length();
        for (int i = 1, j = 0, cnt = 0; i < n; ++i) {
            cnt += s.charAt(i) == s.charAt(i - 1) ? 1 : 0;
            for (; cnt > 1; ++j) {
                cnt -= s.charAt(j) == s.charAt(j + 1) ? 1 : 0;
            }
            ans = Math.max(ans, i - j + 1);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    int longestSemiRepetitiveSubstring(string s) {
        int ans = 1, n = s.size();
        for (int i = 1, j = 0, cnt = 0; i < n; ++i) {
            cnt += s[i] == s[i - 1] ? 1 : 0;
            for (; cnt > 1; ++j) {
                cnt -= s[j] == s[j + 1] ? 1 : 0;
            }
            ans = max(ans, i - j + 1);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func longestSemiRepetitiveSubstring(s string) (ans int) {
    ans = 1
    for i, j, cnt := 1, 0, 0; i < len(s); i++ {
        if s[i] == s[i-1] {
            cnt++
        }
        for ; cnt > 1; j++ {
            if s[j] == s[j+1] {
                cnt--
            }
        }
        ans = max(ans, i-j+1)
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function longestSemiRepetitiveSubstring(s: string): number {
    const n = s.length;
    let ans = 1;
    for (let i = 1, j = 0, cnt = 0; i < n; ++i) {
        cnt += s[i] === s[i - 1] ? 1 : 0;
        for (; cnt > 1; ++j) {
            cnt -= s[j] === s[j + 1] ? 1 : 0;
        }
        ans = Math.max(ans, i - j + 1);
    }
    return ans;
}

Solution 2: Two Pointers (Optimization)

Since the problem only requires us to find the length of the longest semi-repetitive substring, each time the number of adjacent identical characters in the interval exceeds $1$, we can move the left pointer $l$ once, while the right pointer $r$ continues to move to the right. This ensures that the length of the substring does not decrease.

Finally, the answer is $n - l$, where $n$ is the length of the string.

The time complexity is $O(n)$, where $n$ is the length of the string. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution:
    def longestSemiRepetitiveSubstring(self, s: str) -> int:
        n = len(s)
        cnt = l = 0
        for i in range(1, n):
            cnt += s[i] == s[i - 1]
            if cnt > 1:
                cnt -= s[l] == s[l + 1]
                l += 1
        return n - l
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
    public int longestSemiRepetitiveSubstring(String s) {
        int n = s.length();
        int cnt = 0, l = 0;
        for (int i = 1; i < n; ++i) {
            cnt += s.charAt(i) == s.charAt(i - 1) ? 1 : 0;
            if (cnt > 1) {
                cnt -= s.charAt(l) == s.charAt(++l) ? 1 : 0;
            }
        }
        return n - l;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    int longestSemiRepetitiveSubstring(string s) {
        int n = s.length();
        int cnt = 0, l = 0;
        for (int i = 1; i < n; ++i) {
            cnt += s[i] == s[i - 1] ? 1 : 0;
            if (cnt > 1) {
                cnt -= s[l] == s[++l] ? 1 : 0;
            }
        }
        return n - l;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func longestSemiRepetitiveSubstring(s string) (ans int) {
    cnt, l := 0, 0
    for i, c := range s[1:] {
        if byte(c) == s[i] {
            cnt++
        }
        if cnt > 1 {
            if s[l] == s[l+1] {
                cnt--
            }
            l++
        }
    }
    return len(s) - l
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function longestSemiRepetitiveSubstring(s: string): number {
    const n = s.length;
    let [cnt, l] = [0, 0];
    for (let i = 1; i < n; ++i) {
        cnt += s[i] === s[i - 1] ? 1 : 0;
        if (cnt > 1) {
            cnt -= s[l] === s[l + 1] ? 1 : 0;
            ++l;
        }
    }
    return n - l;
}

Comments