You are given a 0-indexed integer array books of length n where books[i] denotes the number of books on the ith shelf of a bookshelf.
You are going to take books from a contiguous section of the bookshelf spanning from l to r where 0 <= l <= r < n. For each index i in the range l <= i < r, you must take strictly fewer books from shelf i than shelf i + 1.
Return the maximum number of books you can take from the bookshelf.
Example 1:
Input: books = [8,5,2,7,9]
Output: 19
Explanation:
- Take 1 book from shelf 1.
- Take 2 books from shelf 2.
- Take 7 books from shelf 3.
- Take 9 books from shelf 4.
You have taken 19 books, so return 19.
It can be proven that 19 is the maximum number of books you can take.
Example 2:
Input: books = [7,0,3,4,5]
Output: 12
Explanation:
- Take 3 books from shelf 2.
- Take 4 books from shelf 3.
- Take 5 books from shelf 4.
You have taken 12 books so return 12.
It can be proven that 12 is the maximum number of books you can take.
Example 3:
Input: books = [8,2,3,7,3,4,0,1,4,3]
Output: 13
Explanation:
- Take 1 book from shelf 0.
- Take 2 books from shelf 1.
- Take 3 books from shelf 2.
- Take 7 books from shelf 3.
You have taken 13 books so return 13.
It can be proven that 13 is the maximum number of books you can take.
Constraints:
1 <= books.length <= 105
0 <= books[i] <= 105
Solutions
Solution 1: Simulation
We directly compare each row and column of the matrix $grid$. If they are equal, then it is a pair of equal row-column pairs, and we increment the answer by one.
The time complexity is $O(n^3)$, where $n$ is the number of rows or columns in the matrix $grid$. The space complexity is $O(1)$.