Skip to content

97. Interleaving String

Description

Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.

An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:

  • s = s1 + s2 + ... + sn
  • t = t1 + t2 + ... + tm
  • |n - m| <= 1
  • The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ...

Note: a + b is the concatenation of strings a and b.

 

Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.

Example 2:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.

Example 3:

Input: s1 = "", s2 = "", s3 = ""
Output: true

 

Constraints:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1, s2, and s3 consist of lowercase English letters.

 

Follow up: Could you solve it using only O(s2.length) additional memory space?

Solutions

Let's denote the length of string $s_1$ as $m$ and the length of string $s_2$ as $n$. If $m + n \neq |s_3|$, then $s_3$ is definitely not an interleaving string of $s_1$ and $s_2$, so we return false.

Next, we design a function $dfs(i, j)$, which represents whether the remaining part of $s_3$ can be interleaved from the $i$th character of $s_1$ and the $j$th character of $s_2$. The answer is $dfs(0, 0)$.

The calculation process of function $dfs(i, j)$ is as follows:

If $i \geq m$ and $j \geq n$, it means that both $s_1$ and $s_2$ have been traversed, so we return true.

If $i < m$ and $s_1[i] = s_3[i + j]$, it means that the character $s_1[i]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i + 1, j)$ to check whether the next character of $s_1$ can match the current character of $s_2$. If it can match, we return true.

Similarly, if $j < n$ and $s_2[j] = s_3[i + j]$, it means that the character $s_2[j]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i, j + 1)$ to check whether the next character of $s_2$ can match the current character of $s_1$. If it can match, we return true.

Otherwise, we return false.

To avoid repeated calculations, we can use memoization search.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        @cache
        def dfs(i: int, j: int) -> bool:
            if i >= m and j >= n:
                return True
            k = i + j
            if i < m and s1[i] == s3[k] and dfs(i + 1, j):
                return True
            if j < n and s2[j] == s3[k] and dfs(i, j + 1):
                return True
            return False

        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        return dfs(0, 0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
    private Map<List<Integer>, Boolean> f = new HashMap<>();
    private String s1;
    private String s2;
    private String s3;
    private int m;
    private int n;

    public boolean isInterleave(String s1, String s2, String s3) {
        m = s1.length();
        n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        this.s1 = s1;
        this.s2 = s2;
        this.s3 = s3;
        return dfs(0, 0);
    }

    private boolean dfs(int i, int j) {
        if (i >= m && j >= n) {
            return true;
        }
        var key = List.of(i, j);
        if (f.containsKey(key)) {
            return f.get(key);
        }
        int k = i + j;
        boolean ans = false;
        if (i < m && s1.charAt(i) == s3.charAt(k) && dfs(i + 1, j)) {
            ans = true;
        }
        if (!ans && j < n && s2.charAt(j) == s3.charAt(k) && dfs(i, j + 1)) {
            ans = true;
        }
        f.put(key, ans);
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        vector<vector<int>> f(m + 1, vector<int>(n + 1, -1));
        function<bool(int, int)> dfs = [&](int i, int j) {
            if (i >= m && j >= n) {
                return true;
            }
            if (f[i][j] != -1) {
                return f[i][j] == 1;
            }
            f[i][j] = 0;
            int k = i + j;
            if (i < m && s1[i] == s3[k] && dfs(i + 1, j)) {
                f[i][j] = 1;
            }
            if (!f[i][j] && j < n && s2[j] == s3[k] && dfs(i, j + 1)) {
                f[i][j] = 1;
            }
            return f[i][j] == 1;
        };
        return dfs(0, 0);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func isInterleave(s1 string, s2 string, s3 string) bool {
    m, n := len(s1), len(s2)
    if m+n != len(s3) {
        return false
    }

    f := map[int]bool{}
    var dfs func(int, int) bool
    dfs = func(i, j int) bool {
        if i >= m && j >= n {
            return true
        }
        if v, ok := f[i*200+j]; ok {
            return v
        }
        k := i + j
        f[i*200+j] = (i < m && s1[i] == s3[k] && dfs(i+1, j)) || (j < n && s2[j] == s3[k] && dfs(i, j+1))
        return f[i*200+j]
    }
    return dfs(0, 0)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
    const dfs = (i: number, j: number): boolean => {
        if (i >= m && j >= n) {
            return true;
        }
        if (f[i][j]) {
            return f[i][j] === 1;
        }
        f[i][j] = -1;
        if (i < m && s1[i] === s3[i + j] && dfs(i + 1, j)) {
            f[i][j] = 1;
        }
        if (f[i][j] === -1 && j < n && s2[j] === s3[i + j] && dfs(i, j + 1)) {
            f[i][j] = 1;
        }
        return f[i][j] === 1;
    };
    return dfs(0, 0);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
impl Solution {
    #[allow(dead_code)]
    pub fn is_interleave(s1: String, s2: String, s3: String) -> bool {
        let n = s1.len();
        let m = s2.len();

        if s1.len() + s2.len() != s3.len() {
            return false;
        }

        let mut record = vec![vec![-1; m + 1]; n + 1];

        Self::dfs(
            &mut record,
            n,
            m,
            0,
            0,
            &s1.chars().collect(),
            &s2.chars().collect(),
            &s3.chars().collect(),
        )
    }

    #[allow(dead_code)]
    fn dfs(
        record: &mut Vec<Vec<i32>>,
        n: usize,
        m: usize,
        i: usize,
        j: usize,
        s1: &Vec<char>,
        s2: &Vec<char>,
        s3: &Vec<char>,
    ) -> bool {
        if i >= n && j >= m {
            return true;
        }

        if record[i][j] != -1 {
            return record[i][j] == 1;
        }

        // Set the initial value
        record[i][j] = 0;
        let k = i + j;

        // Let's try `s1` first
        if i < n && s1[i] == s3[k] && Self::dfs(record, n, m, i + 1, j, s1, s2, s3) {
            record[i][j] = 1;
        }

        // If the first approach does not succeed, let's then try `s2`
        if record[i][j] == 0
            && j < m
            && s2[j] == s3[k]
            && Self::dfs(record, n, m, i, j + 1, s1, s2, s3)
        {
            record[i][j] = 1;
        }

        record[i][j] == 1
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public class Solution {
    private int m;
    private int n;
    private string s1;
    private string s2;
    private string s3;
    private int[,] f;

    public bool IsInterleave(string s1, string s2, string s3) {
        m = s1.Length;
        n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        this.s1 = s1;
        this.s2 = s2;
        this.s3 = s3;
        f = new int[m + 1, n + 1];
        return dfs(0, 0);
    }

    private bool dfs(int i, int j) {
        if (i >= m && j >= n) {
            return true;
        }
        if (f[i, j] != 0) {
            return f[i, j] == 1;
        }
        f[i, j] = -1;
        if (i < m && s1[i] == s3[i + j] && dfs(i + 1, j)) {
            f[i, j] = 1;
        }
        if (f[i, j] == -1 && j < n && s2[j] == s3[i + j] && dfs(i, j + 1)) {
            f[i, j] = 1;
        }
        return f[i, j] == 1;
    }
}

Solution 2: Dynamic Programming

We can convert the memoization search in Solution 1 into dynamic programming.

We define $f[i][j]$ to represent whether the first $i$ characters of string $s_1$ and the first $j$ characters of string $s_2$ can interleave to form the first $i + j$ characters of string $s_3$. When transitioning states, we can consider whether the current character is obtained from the last character of $s_1$ or the last character of $s_2$. Therefore, we have the state transition equation:

$$ f[i][j] = \begin{cases} f[i - 1][j] & \textit{if } s_1[i - 1] = s_3[i + j - 1] \ \textit{or } f[i][j - 1] & \textit{if } s_2[j - 1] = s_3[i + j - 1] \ \textit{false} & \textit{otherwise} \end{cases} $$

where $f[0][0] = \textit{true}$ indicates that an empty string is an interleaving string of two empty strings.

The answer is $f[m][n]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        f = [[False] * (n + 1) for _ in range(m + 1)]
        f[0][0] = True
        for i in range(m + 1):
            for j in range(n + 1):
                k = i + j - 1
                if i and s1[i - 1] == s3[k]:
                    f[i][j] = f[i - 1][j]
                if j and s2[j - 1] == s3[k]:
                    f[i][j] |= f[i][j - 1]
        return f[m][n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        int m = s1.length(), n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        boolean[][] f = new boolean[m + 1][n + 1];
        f[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1.charAt(i - 1) == s3.charAt(k)) {
                    f[i][j] = f[i - 1][j];
                }
                if (j > 0 && s2.charAt(j - 1) == s3.charAt(k)) {
                    f[i][j] |= f[i][j - 1];
                }
            }
        }
        return f[m][n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        bool f[m + 1][n + 1];
        memset(f, false, sizeof(f));
        f[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1[i - 1] == s3[k]) {
                    f[i][j] = f[i - 1][j];
                }
                if (j > 0 && s2[j - 1] == s3[k]) {
                    f[i][j] |= f[i][j - 1];
                }
            }
        }
        return f[m][n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
func isInterleave(s1 string, s2 string, s3 string) bool {
    m, n := len(s1), len(s2)
    if m+n != len(s3) {
        return false
    }
    f := make([][]bool, m+1)
    for i := range f {
        f[i] = make([]bool, n+1)
    }
    f[0][0] = true
    for i := 0; i <= m; i++ {
        for j := 0; j <= n; j++ {
            k := i + j - 1
            if i > 0 && s1[i-1] == s3[k] {
                f[i][j] = f[i-1][j]
            }
            if j > 0 && s2[j-1] == s3[k] {
                f[i][j] = (f[i][j] || f[i][j-1])
            }
        }
    }
    return f[m][n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: boolean[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(false));
    f[0][0] = true;
    for (let i = 0; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            const k = i + j - 1;
            if (i > 0 && s1[i - 1] === s3[k]) {
                f[i][j] = f[i - 1][j];
            }
            if (j > 0 && s2[j - 1] === s3[k]) {
                f[i][j] = f[i][j] || f[i][j - 1];
            }
        }
    }
    return f[m][n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class Solution {
    public bool IsInterleave(string s1, string s2, string s3) {
        int m = s1.Length, n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        bool[,] f = new bool[m + 1, n + 1];
        f[0, 0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1[i - 1] == s3[k]) {
                    f[i, j] = f[i - 1, j];
                }
                if (j > 0 && s2[j - 1] == s3[k]) {
                    f[i, j] |= f[i, j - 1];
                }
            }
        }
        return f[m, n];
    }
}

We notice that the state $f[i][j]$ is only related to the states $f[i - 1][j]$, $f[i][j - 1]$, and $f[i - 1][j - 1]$. Therefore, we can use a rolling array to optimize the space complexity, reducing the original space complexity from $O(m \times n)$ to $O(n)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        f = [True] + [False] * n
        for i in range(m + 1):
            for j in range(n + 1):
                k = i + j - 1
                if i:
                    f[j] &= s1[i - 1] == s3[k]
                if j:
                    f[j] |= f[j - 1] and s2[j - 1] == s3[k]
        return f[n]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        int m = s1.length(), n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        boolean[] f = new boolean[n + 1];
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0) {
                    f[j] &= s1.charAt(i - 1) == s3.charAt(k);
                }
                if (j > 0) {
                    f[j] |= (f[j - 1] & s2.charAt(j - 1) == s3.charAt(k));
                }
            }
        }
        return f[n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        bool f[n + 1];
        memset(f, false, sizeof(f));
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i) {
                    f[j] &= s1[i - 1] == s3[k];
                }
                if (j) {
                    f[j] |= (s2[j - 1] == s3[k] && f[j - 1]);
                }
            }
        }
        return f[n];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
func isInterleave(s1 string, s2 string, s3 string) bool {
    m, n := len(s1), len(s2)
    if m+n != len(s3) {
        return false
    }
    f := make([]bool, n+1)
    f[0] = true
    for i := 0; i <= m; i++ {
        for j := 0; j <= n; j++ {
            k := i + j - 1
            if i > 0 {
                f[j] = (f[j] && s1[i-1] == s3[k])
            }
            if j > 0 {
                f[j] = (f[j] || (s2[j-1] == s3[k] && f[j-1]))
            }
        }
    }
    return f[n]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: boolean[] = new Array(n + 1).fill(false);
    f[0] = true;
    for (let i = 0; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            const k = i + j - 1;
            if (i) {
                f[j] = f[j] && s1[i - 1] === s3[k];
            }
            if (j) {
                f[j] = f[j] || (f[j - 1] && s2[j - 1] === s3[k]);
            }
        }
    }
    return f[n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class Solution {
    public bool IsInterleave(string s1, string s2, string s3) {
        int m = s1.Length, n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        bool[] f = new bool[n + 1];
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0) {
                    f[j] &= s1[i - 1] == s3[k];
                }
                if (j > 0) {
                    f[j] |= (f[j - 1] & s2[j - 1] == s3[k]);
                }
            }
        }
        return f[n];
    }
}

Comments