Skip to content

921. Minimum Add to Make Parentheses Valid

Description

A parentheses string is valid if and only if:

  • It is the empty string,
  • It can be written as AB (A concatenated with B), where A and B are valid strings, or
  • It can be written as (A), where A is a valid string.

You are given a parentheses string s. In one move, you can insert a parenthesis at any position of the string.

  • For example, if s = "()))", you can insert an opening parenthesis to be "(()))" or a closing parenthesis to be "())))".

Return the minimum number of moves required to make s valid.

 

Example 1:

Input: s = "())"
Output: 1

Example 2:

Input: s = "((("
Output: 3

 

Constraints:

  • 1 <= s.length <= 1000
  • s[i] is either '(' or ')'.

Solutions

Solution 1: Greedy + Stack

This problem is a classic parenthesis matching problem, which can be solved using "Greedy + Stack".

Iterate through each character $c$ in the string $s$:

  • If $c$ is a left parenthesis, directly push $c$ into the stack;
  • If $c$ is a right parenthesis, at this point if the stack is not empty, and the top element of the stack is a left parenthesis, then pop the top element of the stack, indicating a successful match; otherwise, push $c$ into the stack.

After the iteration ends, the number of remaining elements in the stack is the number of parentheses that need to be added.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the string $s$.

1
2
3
4
5
6
7
8
9
class Solution:
    def minAddToMakeValid(self, s: str) -> int:
        stk = []
        for c in s:
            if c == ')' and stk and stk[-1] == '(':
                stk.pop()
            else:
                stk.append(c)
        return len(stk)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
    public int minAddToMakeValid(String s) {
        Deque<Character> stk = new ArrayDeque<>();
        for (char c : s.toCharArray()) {
            if (c == ')' && !stk.isEmpty() && stk.peek() == '(') {
                stk.pop();
            } else {
                stk.push(c);
            }
        }
        return stk.size();
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
public:
    int minAddToMakeValid(string s) {
        string stk;
        for (char c : s) {
            if (c == ')' && stk.size() && stk.back() == '(')
                stk.pop_back();
            else
                stk.push_back(c);
        }
        return stk.size();
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
func minAddToMakeValid(s string) int {
    stk := []rune{}
    for _, c := range s {
        if c == ')' && len(stk) > 0 && stk[len(stk)-1] == '(' {
            stk = stk[:len(stk)-1]
        } else {
            stk = append(stk, c)
        }
    }
    return len(stk)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
function minAddToMakeValid(s: string): number {
    const stk: string[] = [];
    for (const c of s) {
        if (c === ')' && stk.length > 0 && stk.at(-1)! === '(') {
            stk.pop();
        } else {
            stk.push(c);
        }
    }
    return stk.length;
}

Solution 2: Greedy + Counting

Solution 1 uses a stack to implement parenthesis matching, but we can also directly implement it through counting.

Define a variable cnt to represent the current number of left parentheses to be matched, and a variable ans to record the answer. Initially, both variables are set to $0$.

Iterate through each character $c$ in the string $s$:

  • If $c$ is a left parenthesis, increase the value of cnt by $1$;
  • If $c$ is a right parenthesis, at this point if $cnt > 0$, it means that there are left parentheses that can be matched, so decrease the value of cnt by $1$; otherwise, it means that the current right parenthesis cannot be matched, so increase the value of ans by $1$.

After the iteration ends, add the value of cnt to ans, which is the answer.

The time complexity is $O(n)$, and the space complexity is $O(1)$, where $n$ is the length of the string $s$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution:
    def minAddToMakeValid(self, s: str) -> int:
        ans = cnt = 0
        for c in s:
            if c == '(':
                cnt += 1
            elif cnt:
                cnt -= 1
            else:
                ans += 1
        ans += cnt
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
    public int minAddToMakeValid(String s) {
        int ans = 0, cnt = 0;
        for (char c : s.toCharArray()) {
            if (c == '(') {
                ++cnt;
            } else if (cnt > 0) {
                --cnt;
            } else {
                ++ans;
            }
        }
        ans += cnt;
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
public:
    int minAddToMakeValid(string s) {
        int ans = 0, cnt = 0;
        for (char c : s) {
            if (c == '(')
                ++cnt;
            else if (cnt)
                --cnt;
            else
                ++ans;
        }
        ans += cnt;
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
func minAddToMakeValid(s string) int {
    ans, cnt := 0, 0
    for _, c := range s {
        if c == '(' {
            cnt++
        } else if cnt > 0 {
            cnt--
        } else {
            ans++
        }
    }
    ans += cnt
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function minAddToMakeValid(s: string): number {
    let [ans, cnt] = [0, 0];
    for (const c of s) {
        if (c === '(') {
            ++cnt;
        } else if (cnt) {
            --cnt;
        } else {
            ++ans;
        }
    }
    ans += cnt;
    return ans;
}

Solution 3: Replace + recursion

1
2
3
4
5
6
function minAddToMakeValid(s: string): number {
    const l = s.length;
    s = s.replace('()', '');

    return s.length === l ? l : minAddToMakeValid(s);
}
1
2
3
4
5
6
7
8
9
/**
 * @param {string} s
 * @return {number}
 */
var minAddToMakeValid = function (s) {
    const l = s.length;
    s = s.replace('()', '');
    return s.length === l ? l : minAddToMakeValid(s);
};

Comments