Skip to content

878. Nth Magical Number

Description

A positive integer is magical if it is divisible by either a or b.

Given the three integers n, a, and b, return the nth magical number. Since the answer may be very large, return it modulo 109 + 7.

 

Example 1:

Input: n = 1, a = 2, b = 3
Output: 2

Example 2:

Input: n = 4, a = 2, b = 3
Output: 6

 

Constraints:

  • 1 <= n <= 109
  • 2 <= a, b <= 4 * 104

Solutions

Solution 1

1
2
3
4
5
6
class Solution:
    def nthMagicalNumber(self, n: int, a: int, b: int) -> int:
        mod = 10**9 + 7
        c = lcm(a, b)
        r = (a + b) * n
        return bisect_left(range(r), x=n, key=lambda x: x // a + x // b - x // c) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int nthMagicalNumber(int n, int a, int b) {
        int c = a * b / gcd(a, b);
        long l = 0, r = (long) (a + b) * n;
        while (l < r) {
            long mid = l + r >>> 1;
            if (mid / a + mid / b - mid / c >= n) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return (int) (l % MOD);
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
using ll = long long;

class Solution {
public:
    const int mod = 1e9 + 7;

    int nthMagicalNumber(int n, int a, int b) {
        int c = lcm(a, b);
        ll l = 0, r = 1ll * (a + b) * n;
        while (l < r) {
            ll mid = l + r >> 1;
            if (mid / a + mid / b - mid / c >= n)
                r = mid;
            else
                l = mid + 1;
        }
        return l % mod;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
func nthMagicalNumber(n int, a int, b int) int {
    c := a * b / gcd(a, b)
    const mod int = 1e9 + 7
    r := (a + b) * n
    return sort.Search(r, func(x int) bool { return x/a+x/b-x/c >= n }) % mod
}

func gcd(a, b int) int {
    if b == 0 {
        return a
    }
    return gcd(b, a%b)
}

Comments