There is an exam room with n seats in a single row labeled from 0 to n - 1.
When a student enters the room, they must sit in the seat that maximizes the distance to the closest person. If there are multiple such seats, they sit in the seat with the lowest number. If no one is in the room, then the student sits at seat number 0.
Design a class that simulates the mentioned exam room.
Implement the ExamRoom class:
ExamRoom(int n) Initializes the object of the exam room with the number of the seats n.
int seat() Returns the label of the seat at which the next student will set.
void leave(int p) Indicates that the student sitting at seat p will leave the room. It is guaranteed that there will be a student sitting at seat p.
Example 1:
Input
["ExamRoom", "seat", "seat", "seat", "seat", "leave", "seat"]
[[10], [], [], [], [], [4], []]
Output
[null, 0, 9, 4, 2, null, 5]
Explanation
ExamRoom examRoom = new ExamRoom(10);
examRoom.seat(); // return 0, no one is in the room, then the student sits at seat number 0.
examRoom.seat(); // return 9, the student sits at the last seat number 9.
examRoom.seat(); // return 4, the student sits at the last seat number 4.
examRoom.seat(); // return 2, the student sits at the last seat number 2.
examRoom.leave(4);
examRoom.seat(); // return 5, the student sits at the last seat number 5.
Constraints:
1 <= n <= 109
It is guaranteed that there is a student sitting at seat p.
At most 104 calls will be made to seat and leave.
Solutions
Solution 1: Ordered Set + Hash Table
Considering that each time we call $\text{seat}()$, we need to find the seat with the maximum distance, we can use an ordered set to store seat intervals. Each element of the ordered set is a tuple $(l, r)$, indicating that the seats between $l$ and $r$ (excluding $l$ and $r$) can be occupied by a student. Initially, the ordered set contains only one element $(-1, n)$, indicating that the seats between $(-1, n)$ can be occupied by a student.
Additionally, we use two hash tables $\textit{left}$ and $\textit{right}$ to maintain the left and right neighbors of each occupied seat, making it easier to merge two seat intervals when calling $\text{leave}(p)$.
The time complexity is $O(\log n)$, and the space complexity is $O(n)$. Here, $n$ is the number of seats in the exam room.
classExamRoom:def__init__(self,n:int):defdist(x):l,r=xreturnr-l-1ifl==-1orr==nelse(r-l)>>1self.n=nself.ts=SortedList(key=lambdax:(-dist(x),x[0]))self.left={}self.right={}self.add((-1,n))defseat(self)->int:s=self.ts[0]p=(s[0]+s[1])>>1ifs[0]==-1:p=0elifs[1]==self.n:p=self.n-1self.delete(s)self.add((s[0],p))self.add((p,s[1]))returnpdefleave(self,p:int)->None:l,r=self.left[p],self.right[p]self.delete((l,p))self.delete((p,r))self.add((l,r))defadd(self,s):self.ts.add(s)self.left[s[1]]=s[0]self.right[s[0]]=s[1]defdelete(self,s):self.ts.remove(s)self.left.pop(s[1])self.right.pop(s[0])# Your ExamRoom object will be instantiated and called as such:# obj = ExamRoom(n)# param_1 = obj.seat()# obj.leave(p)
classExamRoom{privateTreeSet<int[]>ts=newTreeSet<>((a,b)->{intd1=dist(a),d2=dist(b);returnd1==d2?a[0]-b[0]:d2-d1;});privateMap<Integer,Integer>left=newHashMap<>();privateMap<Integer,Integer>right=newHashMap<>();privateintn;publicExamRoom(intn){this.n=n;add(newint[]{-1,n});}publicintseat(){int[]s=ts.first();intp=(s[0]+s[1])>>1;if(s[0]==-1){p=0;}elseif(s[1]==n){p=n-1;}del(s);add(newint[]{s[0],p});add(newint[]{p,s[1]});returnp;}publicvoidleave(intp){intl=left.get(p),r=right.get(p);del(newint[]{l,p});del(newint[]{p,r});add(newint[]{l,r});}privateintdist(int[]s){intl=s[0],r=s[1];returnl==-1||r==n?r-l-1:(r-l)>>1;}privatevoidadd(int[]s){ts.add(s);left.put(s[1],s[0]);right.put(s[0],s[1]);}privatevoiddel(int[]s){ts.remove(s);left.remove(s[1]);right.remove(s[0]);}}/** * Your ExamRoom object will be instantiated and called as such: * ExamRoom obj = new ExamRoom(n); * int param_1 = obj.seat(); * obj.leave(p); */
intN;intdist(constpair<int,int>&p){auto[l,r]=p;if(l==-1||r==N)returnr-l-1;return(r-l)>>1;}structcmp{booloperator()(constpair<int,int>&a,constpair<int,int>&b)const{intd1=dist(a),d2=dist(b);returnd1==d2?a.first<b.first:d1>d2;};};classExamRoom{public:ExamRoom(intn){N=n;this->n=n;add({-1,n});}intseat(){autos=*ts.begin();intp=(s.first+s.second)>>1;if(s.first==-1){p=0;}elseif(s.second==n){p=n-1;}del(s);add({s.first,p});add({p,s.second});returnp;}voidleave(intp){intl=left[p],r=right[p];del({l,p});del({p,r});add({l,r});}private:set<pair<int,int>,cmp>ts;unordered_map<int,int>left;unordered_map<int,int>right;intn;voidadd(pair<int,int>s){ts.insert(s);left[s.second]=s.first;right[s.first]=s.second;}voiddel(pair<int,int>s){ts.erase(s);left.erase(s.second);right.erase(s.first);}};/** * Your ExamRoom object will be instantiated and called as such: * ExamRoom* obj = new ExamRoom(n); * int param_1 = obj->seat(); * obj->leave(p); */
typeExamRoomstruct{rbt*redblacktree.Treeleftmap[int]intrightmap[int]intnint}funcConstructor(nint)ExamRoom{dist:=func(s[]int)int{ifs[0]==-1||s[1]==n{returns[1]-s[0]-1}return(s[1]-s[0])>>1}cmp:=func(a,bany)int{x,y:=a.([]int),b.([]int)d1,d2:=dist(x),dist(y)ifd1==d2{returnx[0]-y[0]}returnd2-d1}this:=ExamRoom{redblacktree.NewWith(cmp),map[int]int{},map[int]int{},n}this.add([]int{-1,n})returnthis}func(this*ExamRoom)Seat()int{s:=this.rbt.Left().Key.([]int)p:=(s[0]+s[1])>>1ifs[0]==-1{p=0}elseifs[1]==this.n{p=this.n-1}this.del(s)this.add([]int{s[0],p})this.add([]int{p,s[1]})returnp}func(this*ExamRoom)Leave(pint){l,_:=this.left[p]r,_:=this.right[p]this.del([]int{l,p})this.del([]int{p,r})this.add([]int{l,r})}func(this*ExamRoom)add(s[]int){this.rbt.Put(s,struct{}{})this.left[s[1]]=s[0]this.right[s[0]]=s[1]}func(this*ExamRoom)del(s[]int){this.rbt.Remove(s)delete(this.left,s[1])delete(this.right,s[0])}/** * Your ExamRoom object will be instantiated and called as such: * obj := Constructor(n); * param_1 := obj.Seat(); * obj.Leave(p); */
classExamRoom{privatets:TreeSet<number[]>=newTreeSet<number[]>((a,b)=>{constd1=this.dist(a),d2=this.dist(b);returnd1===d2?a[0]-b[0]:d2-d1;});privateleft:Map<number,number>=newMap();privateright:Map<number,number>=newMap();privaten:number;constructor(n:number){this.n=n;this.add([-1,n]);}seat():number{consts=this.ts.first();letp=Math.floor((s[0]+s[1])/2);if(s[0]===-1){p=0;}elseif(s[1]===this.n){p=this.n-1;}this.del(s);this.add([s[0],p]);this.add([p,s[1]]);returnp;}leave(p:number):void{constl=this.left.get(p)!;constr=this.right.get(p)!;this.del([l,p]);this.del([p,r]);this.add([l,r]);}privatedist(s:number[]):number{const[l,r]=s;returnl===-1||r===this.n?r-l-1:Math.floor((r-l)/2);}privateadd(s:number[]):void{this.ts.add(s);this.left.set(s[1],s[0]);this.right.set(s[0],s[1]);}privatedel(s:number[]):void{this.ts.delete(s);this.left.delete(s[1]);this.right.delete(s[0]);}}typeCompare<T>=(lhs:T,rhs:T)=>number;classRBTreeNode<T=number>{data:T;count:number;left:RBTreeNode<T>|null;right:RBTreeNode<T>|null;parent:RBTreeNode<T>|null;color:number;constructor(data:T){this.data=data;this.left=this.right=this.parent=null;this.color=0;this.count=1;}sibling():RBTreeNode<T>|null{if(!this.parent)returnnull;// sibling null if no parentreturnthis.isOnLeft()?this.parent.right:this.parent.left;}isOnLeft():boolean{returnthis===this.parent!.left;}hasRedChild():boolean{return(Boolean(this.left&&this.left.color===0)||Boolean(this.right&&this.right.color===0));}}classRBTree<T>{root:RBTreeNode<T>|null;lt:(l:T,r:T)=>boolean;constructor(compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0)){this.root=null;this.lt=(l:T,r:T)=>compare(l,r)<0;}rotateLeft(pt:RBTreeNode<T>):void{constright=pt.right!;pt.right=right.left;if(pt.right)pt.right.parent=pt;right.parent=pt.parent;if(!pt.parent)this.root=right;elseif(pt===pt.parent.left)pt.parent.left=right;elsept.parent.right=right;right.left=pt;pt.parent=right;}rotateRight(pt:RBTreeNode<T>):void{constleft=pt.left!;pt.left=left.right;if(pt.left)pt.left.parent=pt;left.parent=pt.parent;if(!pt.parent)this.root=left;elseif(pt===pt.parent.left)pt.parent.left=left;elsept.parent.right=left;left.right=pt;pt.parent=left;}swapColor(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.color;p1.color=p2.color;p2.color=tmp;}swapData(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.data;p1.data=p2.data;p2.data=tmp;}fixAfterInsert(pt:RBTreeNode<T>):void{letparent=null;letgrandParent=null;while(pt!==this.root&&pt.color!==1&&pt.parent?.color===0){parent=pt.parent;grandParent=pt.parent.parent;/* Case : A Parent of pt is left child of Grand-parent of pt */if(parent===grandParent?.left){constuncle=grandParent.right;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle&&uncle.color===0){grandParent.color=0;parent.color=1;uncle.color=1;pt=grandParent;}else{/* Case : 2 pt is right child of its parent Left-rotation required */if(pt===parent.right){this.rotateLeft(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is left child of its parent Right-rotation required */this.rotateRight(grandParent);this.swapColor(parent!,grandParent);pt=parent!;}}else{/* Case : B Parent of pt is right child of Grand-parent of pt */constuncle=grandParent!.left;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle!=null&&uncle.color===0){grandParent!.color=0;parent.color=1;uncle.color=1;pt=grandParent!;}else{/* Case : 2 pt is left child of its parent Right-rotation required */if(pt===parent.left){this.rotateRight(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is right child of its parent Left-rotation required */this.rotateLeft(grandParent!);this.swapColor(parent!,grandParent!);pt=parent!;}}}this.root!.color=1;}delete(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;node.count--;if(!node.count)this.deleteNode(node);returntrue;}deleteAll(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;this.deleteNode(node);returntrue;}deleteNode(v:RBTreeNode<T>):void{constu=BSTreplace(v);// True when u and v are both blackconstuvBlack=(u===null||u.color===1)&&v.color===1;constparent=v.parent!;if(!u){// u is null therefore v is leafif(v===this.root)this.root=null;// v is root, making root nullelse{if(uvBlack){// u and v both black// v is leaf, fix double black at vthis.fixDoubleBlack(v);}else{// u or v is redif(v.sibling()){// sibling is not null, make it red"v.sibling()!.color=0;}}// delete v from the treeif(v.isOnLeft())parent.left=null;elseparent.right=null;}return;}if(!v.left||!v.right){// v has 1 childif(v===this.root){// v is root, assign the value of u to v, and delete uv.data=u.data;v.left=v.right=null;}else{// Detach v from tree and move u upif(v.isOnLeft())parent.left=u;elseparent.right=u;u.parent=parent;if(uvBlack)this.fixDoubleBlack(u);// u and v both black, fix double black at uelseu.color=1;// u or v red, color u black}return;}// v has 2 children, swap data with successor and recursethis.swapData(u,v);this.deleteNode(u);// find node that replaces a deleted node in BSTfunctionBSTreplace(x:RBTreeNode<T>):RBTreeNode<T>|null{// when node have 2 childrenif(x.left&&x.right)returnsuccessor(x.right);// when leafif(!x.left&&!x.right)returnnull;// when single childreturnx.left??x.right;}// find node that do not have a left child// in the subtree of the given nodefunctionsuccessor(x:RBTreeNode<T>):RBTreeNode<T>{lettemp=x;while(temp.left)temp=temp.left;returntemp;}}fixDoubleBlack(x:RBTreeNode<T>):void{if(x===this.root)return;// Reached rootconstsibling=x.sibling();constparent=x.parent!;if(!sibling){// No sibiling, double black pushed upthis.fixDoubleBlack(parent);}else{if(sibling.color===0){// Sibling redparent.color=0;sibling.color=1;if(sibling.isOnLeft())this.rotateRight(parent);// left caseelsethis.rotateLeft(parent);// right casethis.fixDoubleBlack(x);}else{// Sibling blackif(sibling.hasRedChild()){// at least 1 red childrenif(sibling.left&&sibling.left.color===0){if(sibling.isOnLeft()){// left leftsibling.left.color=sibling.color;sibling.color=parent.color;this.rotateRight(parent);}else{// right leftsibling.left.color=parent.color;this.rotateRight(sibling);this.rotateLeft(parent);}}else{if(sibling.isOnLeft()){// left rightsibling.right!.color=parent.color;this.rotateLeft(sibling);this.rotateRight(parent);}else{// right rightsibling.right!.color=sibling.color;sibling.color=parent.color;this.rotateLeft(parent);}}parent.color=1;}else{// 2 black childrensibling.color=0;if(parent.color===1)this.fixDoubleBlack(parent);elseparent.color=1;}}}}insert(data:T):boolean{// search for a position to insertletparent=this.root;while(parent){if(this.lt(data,parent.data)){if(!parent.left)break;elseparent=parent.left;}elseif(this.lt(parent.data,data)){if(!parent.right)break;elseparent=parent.right;}elsebreak;}// insert node into parentconstnode=newRBTreeNode(data);if(!parent)this.root=node;elseif(this.lt(node.data,parent.data))parent.left=node;elseif(this.lt(parent.data,node.data))parent.right=node;else{parent.count++;returnfalse;}node.parent=parent;this.fixAfterInsert(node);returntrue;}find(data:T):RBTreeNode<T>|null{letp=this.root;while(p){if(this.lt(data,p.data)){p=p.left;}elseif(this.lt(p.data,data)){p=p.right;}elsebreak;}returnp??null;}*inOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.inOrder(root.left!))yieldv;yieldroot.data;for(constvofthis.inOrder(root.right!))yieldv;}*reverseInOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.reverseInOrder(root.right!))yieldv;yieldroot.data;for(constvofthis.reverseInOrder(root.left!))yieldv;}}classTreeSet<T=number>{_size:number;tree:RBTree<T>;compare:Compare<T>;constructor(collection:T[]|Compare<T>=[],compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0),){if(typeofcollection==='function'){compare=collection;collection=[];}this._size=0;this.compare=compare;this.tree=newRBTree(compare);for(constvalofcollection)this.add(val);}size():number{returnthis._size;}has(val:T):boolean{return!!this.tree.find(val);}add(val:T):boolean{constsuccessful=this.tree.insert(val);this._size+=successful?1:0;returnsuccessful;}delete(val:T):boolean{constdeleted=this.tree.deleteAll(val);this._size-=deleted?1:0;returndeleted;}ceil(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(p.data,val)>=0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}floor(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(val,p.data)>=0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}higher(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(val,p.data)<0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}lower(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(p.data,val)<0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}first():T|undefined{returnthis.tree.inOrder().next().value;}last():T|undefined{returnthis.tree.reverseInOrder().next().value;}shift():T|undefined{constfirst=this.first();if(first===undefined)returnundefined;this.delete(first);returnfirst;}pop():T|undefined{constlast=this.last();if(last===undefined)returnundefined;this.delete(last);returnlast;}*[Symbol.iterator]():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*keys():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*values():Generator<T,undefined,void>{for(constvalofthis.tree.inOrder())yieldval;returnundefined;}/** * Return a generator for reverse order traversing the set */*rvalues():Generator<T,undefined,void>{for(constvalofthis.tree.reverseInOrder())yieldval;returnundefined;}}/** * Your ExamRoom object will be instantiated and called as such: * var obj = new ExamRoom(n) * var param_1 = obj.seat() * obj.leave(p) */