Skip to content

837. New 21 Game

Description

Alice plays the following game, loosely based on the card game "21".

Alice starts with 0 points and draws numbers while she has less than k points. During each draw, she gains an integer number of points randomly from the range [1, maxPts], where maxPts is an integer. Each draw is independent and the outcomes have equal probabilities.

Alice stops drawing numbers when she gets k or more points.

Return the probability that Alice has n or fewer points.

Answers within 10-5 of the actual answer are considered accepted.

 

Example 1:

Input: n = 10, k = 1, maxPts = 10
Output: 1.00000
Explanation: Alice gets a single card, then stops.

Example 2:

Input: n = 6, k = 1, maxPts = 10
Output: 0.60000
Explanation: Alice gets a single card, then stops.
In 6 out of 10 possibilities, she is at or below 6 points.

Example 3:

Input: n = 21, k = 17, maxPts = 10
Output: 0.73278

 

Constraints:

  • 0 <= k <= n <= 104
  • 1 <= maxPts <= 104

Solutions

Solution 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def new21Game(self, n: int, k: int, maxPts: int) -> float:
        @cache
        def dfs(i: int) -> float:
            if i >= k:
                return int(i <= n)
            if i == k - 1:
                return min(n - k + 1, maxPts) / maxPts
            return dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts

        return dfs(0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    private double[] f;
    private int n, k, maxPts;

    public double new21Game(int n, int k, int maxPts) {
        f = new double[k];
        this.n = n;
        this.k = k;
        this.maxPts = maxPts;
        return dfs(0);
    }

    private double dfs(int i) {
        if (i >= k) {
            return i <= n ? 1 : 0;
        }
        if (i == k - 1) {
            return Math.min(n - k + 1, maxPts) * 1.0 / maxPts;
        }
        if (f[i] != 0) {
            return f[i];
        }
        return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
    double new21Game(int n, int k, int maxPts) {
        vector<double> f(k);
        function<double(int)> dfs = [&](int i) -> double {
            if (i >= k) {
                return i <= n ? 1 : 0;
            }
            if (i == k - 1) {
                return min(n - k + 1, maxPts) * 1.0 / maxPts;
            }
            if (f[i]) {
                return f[i];
            }
            return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
        };
        return dfs(0);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func new21Game(n int, k int, maxPts int) float64 {
    f := make([]float64, k)
    var dfs func(int) float64
    dfs = func(i int) float64 {
        if i >= k {
            if i <= n {
                return 1
            }
            return 0
        }
        if i == k-1 {
            return float64(min(n-k+1, maxPts)) / float64(maxPts)
        }
        if f[i] > 0 {
            return f[i]
        }
        f[i] = dfs(i+1) + (dfs(i+1)-dfs(i+maxPts+1))/float64(maxPts)
        return f[i]
    }
    return dfs(0)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
function new21Game(n: number, k: number, maxPts: number): number {
    const f = new Array(k).fill(0);
    const dfs = (i: number): number => {
        if (i >= k) {
            return i <= n ? 1 : 0;
        }
        if (i === k - 1) {
            return Math.min(n - k + 1, maxPts) / maxPts;
        }
        if (f[i] !== 0) {
            return f[i];
        }
        return (f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts);
    };
    return dfs(0);
}

Solution 2

1
2
3
4
5
6
7
8
9
class Solution:
    def new21Game(self, n: int, k: int, maxPts: int) -> float:
        f = [0] * (k + maxPts)
        for i in range(k, min(n + 1, k + maxPts)):
            f[i] = 1
        f[k - 1] = min(n - k + 1, maxPts) / maxPts
        for i in range(k - 2, -1, -1):
            f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts
        return f[0]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
    public double new21Game(int n, int k, int maxPts) {
        if (k == 0) {
            return 1.0;
        }
        double[] f = new double[k + maxPts];
        for (int i = k; i < Math.min(n + 1, k + maxPts); ++i) {
            f[i] = 1;
        }
        f[k - 1] = Math.min(n - k + 1, maxPts) * 1.0 / maxPts;
        for (int i = k - 2; i >= 0; --i) {
            f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
        }
        return f[0];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    double new21Game(int n, int k, int maxPts) {
        if (k == 0) {
            return 1.0;
        }
        double f[k + maxPts];
        memset(f, 0, sizeof(f));
        for (int i = k; i < min(n + 1, k + maxPts); ++i) {
            f[i] = 1;
        }
        f[k - 1] = min(n - k + 1, maxPts) * 1.0 / maxPts;
        for (int i = k - 2; i >= 0; --i) {
            f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
        }
        return f[0];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
func new21Game(n int, k int, maxPts int) float64 {
    if k == 0 {
        return 1
    }
    f := make([]float64, k+maxPts)
    for i := k; i < min(n+1, k+maxPts); i++ {
        f[i] = 1
    }
    f[k-1] = float64(min(n-k+1, maxPts)) / float64(maxPts)
    for i := k - 2; i >= 0; i-- {
        f[i] = f[i+1] + (f[i+1]-f[i+maxPts+1])/float64(maxPts)
    }
    return f[0]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function new21Game(n: number, k: number, maxPts: number): number {
    if (k === 0) {
        return 1;
    }
    const f = new Array(k + maxPts).fill(0);
    for (let i = k; i < Math.min(n + 1, k + maxPts); ++i) {
        f[i] = 1;
    }
    f[k - 1] = Math.min(n - k + 1, maxPts) / maxPts;
    for (let i = k - 2; i >= 0; --i) {
        f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
    }
    return f[0];
}

Comments