Skip to content

689. Maximum Sum of 3 Non-Overlapping Subarrays

Description

Given an integer array nums and an integer k, find three non-overlapping subarrays of length k with maximum sum and return them.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

 

Example 1:

Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

Example 2:

Input: nums = [1,2,1,2,1,2,1,2,1], k = 2
Output: [0,2,4]

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] < 216
  • 1 <= k <= floor(nums.length / 3)

Solutions

Solution 1: Sliding Window

We use a sliding window to enumerate the position of the third subarray, while maintaining the maximum sum and its position of the first two non-overlapping subarrays.

The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
    def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
        s = s1 = s2 = s3 = 0
        mx1 = mx12 = 0
        idx1, idx12 = 0, ()
        ans = []
        for i in range(k * 2, len(nums)):
            s1 += nums[i - k * 2]
            s2 += nums[i - k]
            s3 += nums[i]
            if i >= k * 3 - 1:
                if s1 > mx1:
                    mx1 = s1
                    idx1 = i - k * 3 + 1
                if mx1 + s2 > mx12:
                    mx12 = mx1 + s2
                    idx12 = (idx1, i - k * 2 + 1)
                if mx12 + s3 > s:
                    s = mx12 + s3
                    ans = [*idx12, i - k + 1]
                s1 -= nums[i - k * 3 + 1]
                s2 -= nums[i - k * 2 + 1]
                s3 -= nums[i - k + 1]
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
    public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
        int[] ans = new int[3];
        int s = 0, s1 = 0, s2 = 0, s3 = 0;
        int mx1 = 0, mx12 = 0;
        int idx1 = 0, idx121 = 0, idx122 = 0;
        for (int i = k * 2; i < nums.length; ++i) {
            s1 += nums[i - k * 2];
            s2 += nums[i - k];
            s3 += nums[i];
            if (i >= k * 3 - 1) {
                if (s1 > mx1) {
                    mx1 = s1;
                    idx1 = i - k * 3 + 1;
                }
                if (mx1 + s2 > mx12) {
                    mx12 = mx1 + s2;
                    idx121 = idx1;
                    idx122 = i - k * 2 + 1;
                }
                if (mx12 + s3 > s) {
                    s = mx12 + s3;
                    ans = new int[] {idx121, idx122, i - k + 1};
                }
                s1 -= nums[i - k * 3 + 1];
                s2 -= nums[i - k * 2 + 1];
                s3 -= nums[i - k + 1];
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
    vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
        vector<int> ans(3);
        int s = 0, s1 = 0, s2 = 0, s3 = 0;
        int mx1 = 0, mx12 = 0;
        int idx1 = 0, idx121 = 0, idx122 = 0;
        for (int i = k * 2; i < nums.size(); ++i) {
            s1 += nums[i - k * 2];
            s2 += nums[i - k];
            s3 += nums[i];
            if (i >= k * 3 - 1) {
                if (s1 > mx1) {
                    mx1 = s1;
                    idx1 = i - k * 3 + 1;
                }
                if (mx1 + s2 > mx12) {
                    mx12 = mx1 + s2;
                    idx121 = idx1;
                    idx122 = i - k * 2 + 1;
                }
                if (mx12 + s3 > s) {
                    s = mx12 + s3;
                    ans = {idx121, idx122, i - k + 1};
                }
                s1 -= nums[i - k * 3 + 1];
                s2 -= nums[i - k * 2 + 1];
                s3 -= nums[i - k + 1];
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func maxSumOfThreeSubarrays(nums []int, k int) []int {
    ans := make([]int, 3)
    s, s1, s2, s3 := 0, 0, 0, 0
    mx1, mx12 := 0, 0
    idx1, idx121, idx122 := 0, 0, 0
    for i := k * 2; i < len(nums); i++ {
        s1 += nums[i-k*2]
        s2 += nums[i-k]
        s3 += nums[i]
        if i >= k*3-1 {
            if s1 > mx1 {
                mx1 = s1
                idx1 = i - k*3 + 1
            }
            if mx1+s2 > mx12 {
                mx12 = mx1 + s2
                idx121 = idx1
                idx122 = i - k*2 + 1
            }
            if mx12+s3 > s {
                s = mx12 + s3
                ans = []int{idx121, idx122, i - k + 1}
            }
            s1 -= nums[i-k*3+1]
            s2 -= nums[i-k*2+1]
            s3 -= nums[i-k+1]
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
function maxSumOfThreeSubarrays(nums: number[], k: number): number[] {
    const n: number = nums.length;
    const s: number[] = Array(n + 1).fill(0);

    for (let i = 0; i < n; ++i) {
        s[i + 1] = s[i] + nums[i];
    }

    const pre: number[][] = Array(n)
        .fill([])
        .map(() => new Array(2).fill(0));
    const suf: number[][] = Array(n)
        .fill([])
        .map(() => new Array(2).fill(0));

    for (let i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
        const cur: number = s[i + k] - s[i];
        if (cur > t) {
            pre[i + k - 1] = [cur, i];
            t = cur;
            idx = i;
        } else {
            pre[i + k - 1] = [t, idx];
        }
    }

    for (let i = n - k, t = 0, idx = 0; i >= 0; --i) {
        const cur: number = s[i + k] - s[i];
        if (cur >= t) {
            suf[i] = [cur, i];
            t = cur;
            idx = i;
        } else {
            suf[i] = [t, idx];
        }
    }

    let ans: number[] = [];
    for (let i = k, t = 0; i < n - 2 * k + 1; ++i) {
        const cur: number = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
        if (cur > t) {
            ans = [pre[i - 1][1], i, suf[i + k][1]];
            t = cur;
        }
    }

    return ans;
}

Solution 2: Preprocessing Prefix and Suffix + Enumerating Middle Subarray

We can preprocess to get the prefix sum array $s$ of the array $nums$, where $s[i] = \sum_{j=0}^{i-1} nums[j]$. Then for any $i$, $j$, $s[j] - s[i]$ is the sum of the subarray $[i, j)$.

Next, we use dynamic programming to maintain two arrays $pre$ and $suf$ of length $n$, where $pre[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[0, i]$, and $suf[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[i, n)$.

Then, we enumerate the starting position $i$ of the middle subarray. The sum of the three subarrays is $pre[i-1][0] + suf[i+k][0] + (s[i+k] - s[i])$, where $pre[i-1][0]$ represents the maximum sum of the subarray of length $k$ within the range $[0, i-1]$, $suf[i+k][0]$ represents the maximum sum of the subarray of length $k$ within the range $[i+k, n)$, and $(s[i+k] - s[i])$ represents the sum of the subarray of length $k$ within the range $[i, i+k)$. We find the starting positions of the three subarrays corresponding to the maximum sum.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
        n = len(nums)
        s = list(accumulate(nums, initial=0))
        pre = [[] for _ in range(n)]
        suf = [[] for _ in range(n)]
        t = idx = 0
        for i in range(n - k + 1):
            if (cur := s[i + k] - s[i]) > t:
                pre[i + k - 1] = [cur, i]
                t, idx = pre[i + k - 1]
            else:
                pre[i + k - 1] = [t, idx]
        t = idx = 0
        for i in range(n - k, -1, -1):
            if (cur := s[i + k] - s[i]) >= t:
                suf[i] = [cur, i]
                t, idx = suf[i]
            else:
                suf[i] = [t, idx]
        t = 0
        ans = []
        for i in range(k, n - 2 * k + 1):
            if (cur := s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0]) > t:
                ans = [pre[i - 1][1], i, suf[i + k][1]]
                t = cur
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
    public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
        int n = nums.length;
        int[] s = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        int[][] pre = new int[n][0];
        int[][] suf = new int[n][0];
        for (int i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
            int cur = s[i + k] - s[i];
            if (cur > t) {
                pre[i + k - 1] = new int[] {cur, i};
                t = cur;
                idx = i;
            } else {
                pre[i + k - 1] = new int[] {t, idx};
            }
        }
        for (int i = n - k, t = 0, idx = 0; i >= 0; --i) {
            int cur = s[i + k] - s[i];
            if (cur >= t) {
                suf[i] = new int[] {cur, i};
                t = cur;
                idx = i;
            } else {
                suf[i] = new int[] {t, idx};
            }
        }
        int[] ans = new int[0];
        for (int i = k, t = 0; i < n - 2 * k + 1; ++i) {
            int cur = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
            if (cur > t) {
                ans = new int[] {pre[i - 1][1], i, suf[i + k][1]};
                t = cur;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
public:
    vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
        int n = nums.size();
        vector<int> s(n + 1, 0);
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }

        vector<vector<int>> pre(n, vector<int>(2, 0));
        vector<vector<int>> suf(n, vector<int>(2, 0));

        for (int i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
            int cur = s[i + k] - s[i];
            if (cur > t) {
                pre[i + k - 1] = {cur, i};
                t = cur;
                idx = i;
            } else {
                pre[i + k - 1] = {t, idx};
            }
        }

        for (int i = n - k, t = 0, idx = 0; i >= 0; --i) {
            int cur = s[i + k] - s[i];
            if (cur >= t) {
                suf[i] = {cur, i};
                t = cur;
                idx = i;
            } else {
                suf[i] = {t, idx};
            }
        }

        vector<int> ans;
        for (int i = k, t = 0; i < n - 2 * k + 1; ++i) {
            int cur = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
            if (cur > t) {
                ans = {pre[i - 1][1], i, suf[i + k][1]};
                t = cur;
            }
        }

        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
func maxSumOfThreeSubarrays(nums []int, k int) (ans []int) {
    n := len(nums)
    s := make([]int, n+1)
    for i := 0; i < n; i++ {
        s[i+1] = s[i] + nums[i]
    }

    pre := make([][]int, n)
    suf := make([][]int, n)

    for i, t, idx := 0, 0, 0; i < n-k+1; i++ {
        cur := s[i+k] - s[i]
        if cur > t {
            pre[i+k-1] = []int{cur, i}
            t, idx = cur, i
        } else {
            pre[i+k-1] = []int{t, idx}
        }
    }

    for i, t, idx := n-k, 0, 0; i >= 0; i-- {
        cur := s[i+k] - s[i]
        if cur >= t {
            suf[i] = []int{cur, i}
            t, idx = cur, i
        } else {
            suf[i] = []int{t, idx}
        }
    }

    for i, t := k, 0; i < n-2*k+1; i++ {
        cur := s[i+k] - s[i] + pre[i-1][0] + suf[i+k][0]
        if cur > t {
            ans = []int{pre[i-1][1], i, suf[i+k][1]}
            t = cur
        }
    }

    return
}

Comments