Array
Dynamic Programming
Description
Given an integer array nums
and an integer k
, find three non-overlapping subarrays of length k
with maximum sum and return them.
Return the result as a list of indices representing the starting position of each interval (0-indexed ). If there are multiple answers, return the lexicographically smallest one.
Example 1:
Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically smaller.
Example 2:
Input: nums = [1,2,1,2,1,2,1,2,1], k = 2
Output: [0,2,4]
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i] < 216
1 <= k <= floor(nums.length / 3)
Solutions
Solution 1: Sliding Window
We use a sliding window to enumerate the position of the third subarray, while maintaining the maximum sum and its position of the first two non-overlapping subarrays.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 class Solution :
def maxSumOfThreeSubarrays ( self , nums : List [ int ], k : int ) -> List [ int ]:
s = s1 = s2 = s3 = 0
mx1 = mx12 = 0
idx1 , idx12 = 0 , ()
ans = []
for i in range ( k * 2 , len ( nums )):
s1 += nums [ i - k * 2 ]
s2 += nums [ i - k ]
s3 += nums [ i ]
if i >= k * 3 - 1 :
if s1 > mx1 :
mx1 = s1
idx1 = i - k * 3 + 1
if mx1 + s2 > mx12 :
mx12 = mx1 + s2
idx12 = ( idx1 , i - k * 2 + 1 )
if mx12 + s3 > s :
s = mx12 + s3
ans = [ * idx12 , i - k + 1 ]
s1 -= nums [ i - k * 3 + 1 ]
s2 -= nums [ i - k * 2 + 1 ]
s3 -= nums [ i - k + 1 ]
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 class Solution {
public int [] maxSumOfThreeSubarrays ( int [] nums , int k ) {
int [] ans = new int [ 3 ] ;
int s = 0 , s1 = 0 , s2 = 0 , s3 = 0 ;
int mx1 = 0 , mx12 = 0 ;
int idx1 = 0 , idx121 = 0 , idx122 = 0 ;
for ( int i = k * 2 ; i < nums . length ; ++ i ) {
s1 += nums [ i - k * 2 ] ;
s2 += nums [ i - k ] ;
s3 += nums [ i ] ;
if ( i >= k * 3 - 1 ) {
if ( s1 > mx1 ) {
mx1 = s1 ;
idx1 = i - k * 3 + 1 ;
}
if ( mx1 + s2 > mx12 ) {
mx12 = mx1 + s2 ;
idx121 = idx1 ;
idx122 = i - k * 2 + 1 ;
}
if ( mx12 + s3 > s ) {
s = mx12 + s3 ;
ans = new int [] { idx121 , idx122 , i - k + 1 };
}
s1 -= nums [ i - k * 3 + 1 ] ;
s2 -= nums [ i - k * 2 + 1 ] ;
s3 -= nums [ i - k + 1 ] ;
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 class Solution {
public :
vector < int > maxSumOfThreeSubarrays ( vector < int >& nums , int k ) {
vector < int > ans ( 3 );
int s = 0 , s1 = 0 , s2 = 0 , s3 = 0 ;
int mx1 = 0 , mx12 = 0 ;
int idx1 = 0 , idx121 = 0 , idx122 = 0 ;
for ( int i = k * 2 ; i < nums . size (); ++ i ) {
s1 += nums [ i - k * 2 ];
s2 += nums [ i - k ];
s3 += nums [ i ];
if ( i >= k * 3 - 1 ) {
if ( s1 > mx1 ) {
mx1 = s1 ;
idx1 = i - k * 3 + 1 ;
}
if ( mx1 + s2 > mx12 ) {
mx12 = mx1 + s2 ;
idx121 = idx1 ;
idx122 = i - k * 2 + 1 ;
}
if ( mx12 + s3 > s ) {
s = mx12 + s3 ;
ans = { idx121 , idx122 , i - k + 1 };
}
s1 -= nums [ i - k * 3 + 1 ];
s2 -= nums [ i - k * 2 + 1 ];
s3 -= nums [ i - k + 1 ];
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 func maxSumOfThreeSubarrays ( nums [] int , k int ) [] int {
ans := make ([] int , 3 )
s , s1 , s2 , s3 := 0 , 0 , 0 , 0
mx1 , mx12 := 0 , 0
idx1 , idx121 , idx122 := 0 , 0 , 0
for i := k * 2 ; i < len ( nums ); i ++ {
s1 += nums [ i - k * 2 ]
s2 += nums [ i - k ]
s3 += nums [ i ]
if i >= k * 3 - 1 {
if s1 > mx1 {
mx1 = s1
idx1 = i - k * 3 + 1
}
if mx1 + s2 > mx12 {
mx12 = mx1 + s2
idx121 = idx1
idx122 = i - k * 2 + 1
}
if mx12 + s3 > s {
s = mx12 + s3
ans = [] int { idx121 , idx122 , i - k + 1 }
}
s1 -= nums [ i - k * 3 + 1 ]
s2 -= nums [ i - k * 2 + 1 ]
s3 -= nums [ i - k + 1 ]
}
}
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 function maxSumOfThreeSubarrays ( nums : number [], k : number ) : number [] {
const n : number = nums . length ;
const s : number [] = Array ( n + 1 ). fill ( 0 );
for ( let i = 0 ; i < n ; ++ i ) {
s [ i + 1 ] = s [ i ] + nums [ i ];
}
const pre : number [][] = Array ( n )
. fill ([])
. map (() => new Array ( 2 ). fill ( 0 ));
const suf : number [][] = Array ( n )
. fill ([])
. map (() => new Array ( 2 ). fill ( 0 ));
for ( let i = 0 , t = 0 , idx = 0 ; i < n - k + 1 ; ++ i ) {
const cur : number = s [ i + k ] - s [ i ];
if ( cur > t ) {
pre [ i + k - 1 ] = [ cur , i ];
t = cur ;
idx = i ;
} else {
pre [ i + k - 1 ] = [ t , idx ];
}
}
for ( let i = n - k , t = 0 , idx = 0 ; i >= 0 ; -- i ) {
const cur : number = s [ i + k ] - s [ i ];
if ( cur >= t ) {
suf [ i ] = [ cur , i ];
t = cur ;
idx = i ;
} else {
suf [ i ] = [ t , idx ];
}
}
let ans : number [] = [];
for ( let i = k , t = 0 ; i < n - 2 * k + 1 ; ++ i ) {
const cur : number = s [ i + k ] - s [ i ] + pre [ i - 1 ][ 0 ] + suf [ i + k ][ 0 ];
if ( cur > t ) {
ans = [ pre [ i - 1 ][ 1 ], i , suf [ i + k ][ 1 ]];
t = cur ;
}
}
return ans ;
}
Solution 2: Preprocessing Prefix and Suffix + Enumerating Middle Subarray
We can preprocess to get the prefix sum array $s$ of the array $nums$, where $s[i] = \sum_{j=0}^{i-1} nums[j]$. Then for any $i$, $j$, $s[j] - s[i]$ is the sum of the subarray $[i, j)$.
Next, we use dynamic programming to maintain two arrays $pre$ and $suf$ of length $n$, where $pre[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[0, i]$, and $suf[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[i, n)$.
Then, we enumerate the starting position $i$ of the middle subarray. The sum of the three subarrays is $pre[i-1][0] + suf[i+k][0] + (s[i+k] - s[i])$, where $pre[i-1][0]$ represents the maximum sum of the subarray of length $k$ within the range $[0, i-1]$, $suf[i+k][0]$ represents the maximum sum of the subarray of length $k$ within the range $[i+k, n)$, and $(s[i+k] - s[i])$ represents the sum of the subarray of length $k$ within the range $[i, i+k)$. We find the starting positions of the three subarrays corresponding to the maximum sum.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
Python3 Java C++ Go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 class Solution :
def maxSumOfThreeSubarrays ( self , nums : List [ int ], k : int ) -> List [ int ]:
n = len ( nums )
s = list ( accumulate ( nums , initial = 0 ))
pre = [[] for _ in range ( n )]
suf = [[] for _ in range ( n )]
t = idx = 0
for i in range ( n - k + 1 ):
if ( cur := s [ i + k ] - s [ i ]) > t :
pre [ i + k - 1 ] = [ cur , i ]
t , idx = pre [ i + k - 1 ]
else :
pre [ i + k - 1 ] = [ t , idx ]
t = idx = 0
for i in range ( n - k , - 1 , - 1 ):
if ( cur := s [ i + k ] - s [ i ]) >= t :
suf [ i ] = [ cur , i ]
t , idx = suf [ i ]
else :
suf [ i ] = [ t , idx ]
t = 0
ans = []
for i in range ( k , n - 2 * k + 1 ):
if ( cur := s [ i + k ] - s [ i ] + pre [ i - 1 ][ 0 ] + suf [ i + k ][ 0 ]) > t :
ans = [ pre [ i - 1 ][ 1 ], i , suf [ i + k ][ 1 ]]
t = cur
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 class Solution {
public int [] maxSumOfThreeSubarrays ( int [] nums , int k ) {
int n = nums . length ;
int [] s = new int [ n + 1 ] ;
for ( int i = 0 ; i < n ; ++ i ) {
s [ i + 1 ] = s [ i ] + nums [ i ] ;
}
int [][] pre = new int [ n ][ 0 ] ;
int [][] suf = new int [ n ][ 0 ] ;
for ( int i = 0 , t = 0 , idx = 0 ; i < n - k + 1 ; ++ i ) {
int cur = s [ i + k ] - s [ i ] ;
if ( cur > t ) {
pre [ i + k - 1 ] = new int [] { cur , i };
t = cur ;
idx = i ;
} else {
pre [ i + k - 1 ] = new int [] { t , idx };
}
}
for ( int i = n - k , t = 0 , idx = 0 ; i >= 0 ; -- i ) {
int cur = s [ i + k ] - s [ i ] ;
if ( cur >= t ) {
suf [ i ] = new int [] { cur , i };
t = cur ;
idx = i ;
} else {
suf [ i ] = new int [] { t , idx };
}
}
int [] ans = new int [ 0 ] ;
for ( int i = k , t = 0 ; i < n - 2 * k + 1 ; ++ i ) {
int cur = s [ i + k ] - s [ i ] + pre [ i - 1 ][ 0 ] + suf [ i + k ][ 0 ] ;
if ( cur > t ) {
ans = new int [] { pre [ i - 1 ][ 1 ] , i , suf [ i + k ][ 1 ] };
t = cur ;
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 class Solution {
public :
vector < int > maxSumOfThreeSubarrays ( vector < int >& nums , int k ) {
int n = nums . size ();
vector < int > s ( n + 1 , 0 );
for ( int i = 0 ; i < n ; ++ i ) {
s [ i + 1 ] = s [ i ] + nums [ i ];
}
vector < vector < int >> pre ( n , vector < int > ( 2 , 0 ));
vector < vector < int >> suf ( n , vector < int > ( 2 , 0 ));
for ( int i = 0 , t = 0 , idx = 0 ; i < n - k + 1 ; ++ i ) {
int cur = s [ i + k ] - s [ i ];
if ( cur > t ) {
pre [ i + k - 1 ] = { cur , i };
t = cur ;
idx = i ;
} else {
pre [ i + k - 1 ] = { t , idx };
}
}
for ( int i = n - k , t = 0 , idx = 0 ; i >= 0 ; -- i ) {
int cur = s [ i + k ] - s [ i ];
if ( cur >= t ) {
suf [ i ] = { cur , i };
t = cur ;
idx = i ;
} else {
suf [ i ] = { t , idx };
}
}
vector < int > ans ;
for ( int i = k , t = 0 ; i < n - 2 * k + 1 ; ++ i ) {
int cur = s [ i + k ] - s [ i ] + pre [ i - 1 ][ 0 ] + suf [ i + k ][ 0 ];
if ( cur > t ) {
ans = { pre [ i - 1 ][ 1 ], i , suf [ i + k ][ 1 ]};
t = cur ;
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 func maxSumOfThreeSubarrays ( nums [] int , k int ) ( ans [] int ) {
n := len ( nums )
s := make ([] int , n + 1 )
for i := 0 ; i < n ; i ++ {
s [ i + 1 ] = s [ i ] + nums [ i ]
}
pre := make ([][] int , n )
suf := make ([][] int , n )
for i , t , idx := 0 , 0 , 0 ; i < n - k + 1 ; i ++ {
cur := s [ i + k ] - s [ i ]
if cur > t {
pre [ i + k - 1 ] = [] int { cur , i }
t , idx = cur , i
} else {
pre [ i + k - 1 ] = [] int { t , idx }
}
}
for i , t , idx := n - k , 0 , 0 ; i >= 0 ; i -- {
cur := s [ i + k ] - s [ i ]
if cur >= t {
suf [ i ] = [] int { cur , i }
t , idx = cur , i
} else {
suf [ i ] = [] int { t , idx }
}
}
for i , t := k , 0 ; i < n - 2 * k + 1 ; i ++ {
cur := s [ i + k ] - s [ i ] + pre [ i - 1 ][ 0 ] + suf [ i + k ][ 0 ]
if cur > t {
ans = [] int { pre [ i - 1 ][ 1 ], i , suf [ i + k ][ 1 ]}
t = cur
}
}
return
}
GitHub