Skip to content

572. Subtree of Another Tree

Description

Given the roots of two binary trees root and subRoot, return true if there is a subtree of root with the same structure and node values of subRoot and false otherwise.

A subtree of a binary tree tree is a tree that consists of a node in tree and all of this node's descendants. The tree tree could also be considered as a subtree of itself.

 

Example 1:

Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true

Example 2:

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false

 

Constraints:

  • The number of nodes in the root tree is in the range [1, 2000].
  • The number of nodes in the subRoot tree is in the range [1, 1000].
  • -104 <= root.val <= 104
  • -104 <= subRoot.val <= 104

Solutions

Solution 1: DFS

We define a helper function \(\textit{same}(p, q)\) to determine whether the tree rooted at \(p\) and the tree rooted at \(q\) are identical. If the root values of the two trees are equal, and their left and right subtrees are also respectively equal, then the two trees are identical.

In the \(\textit{isSubtree}(\textit{root}, \textit{subRoot})\) function, we first check if \(\textit{root}\) is null. If it is, we return \(\text{false}\). Otherwise, we check if \(\textit{root}\) and \(\textit{subRoot}\) are identical. If they are, we return \(\text{true}\). Otherwise, we recursively check if the left or right subtree of \(\textit{root}\) contains \(\textit{subRoot}\).

The time complexity is \(O(n \times m)\), and the space complexity is \(O(n)\). Here, \(n\) and \(m\) are the number of nodes in the trees \(root\) and \(subRoot\), respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSubtree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
        def same(p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
            if p is None or q is None:
                return p is q
            return p.val == q.val and same(p.left, q.left) and same(p.right, q.right)

        if root is None:
            return False
        return (
            same(root, subRoot)
            or self.isSubtree(root.left, subRoot)
            or self.isSubtree(root.right, subRoot)
        )
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSubtree(TreeNode root, TreeNode subRoot) {
        if (root == null) {
            return false;
        }
        return same(root, subRoot) || isSubtree(root.left, subRoot)
            || isSubtree(root.right, subRoot);
    }

    private boolean same(TreeNode p, TreeNode q) {
        if (p == null || q == null) {
            return p == q;
        }
        return p.val == q.val && same(p.left, q.left) && same(p.right, q.right);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isSubtree(TreeNode* root, TreeNode* subRoot) {
        if (!root) {
            return false;
        }
        return same(root, subRoot) || isSubtree(root->left, subRoot) || isSubtree(root->right, subRoot);
    }

    bool same(TreeNode* p, TreeNode* q) {
        if (!p || !q) {
            return p == q;
        }
        return p->val == q->val && same(p->left, q->left) && same(p->right, q->right);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func isSubtree(root *TreeNode, subRoot *TreeNode) bool {
    var same func(p, q *TreeNode) bool
    same = func(p, q *TreeNode) bool {
        if p == nil || q == nil {
            return p == q
        }
        return p.Val == q.Val && same(p.Left, q.Left) && same(p.Right, q.Right)
    }
    if root == nil {
        return false
    }
    return same(root, subRoot) || isSubtree(root.Left, subRoot) || isSubtree(root.Right, subRoot)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */
function isSubtree(root: TreeNode | null, subRoot: TreeNode | null): boolean {
    const same = (p: TreeNode | null, q: TreeNode | null): boolean => {
        if (!p || !q) {
            return p === q;
        }
        return p.val === q.val && same(p.left, q.left) && same(p.right, q.right);
    };
    if (!root) {
        return false;
    }
    return same(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;

impl Solution {
    pub fn is_subtree(
        root: Option<Rc<RefCell<TreeNode>>>,
        sub_root: Option<Rc<RefCell<TreeNode>>>,
    ) -> bool {
        if root.is_none() {
            return false;
        }
        Self::same(&root, &sub_root)
            || Self::is_subtree(
                root.as_ref().unwrap().borrow().left.clone(),
                sub_root.clone(),
            )
            || Self::is_subtree(
                root.as_ref().unwrap().borrow().right.clone(),
                sub_root.clone(),
            )
    }

    fn same(p: &Option<Rc<RefCell<TreeNode>>>, q: &Option<Rc<RefCell<TreeNode>>>) -> bool {
        match (p, q) {
            (None, None) => true,
            (Some(p), Some(q)) => {
                let p = p.borrow();
                let q = q.borrow();
                p.val == q.val && Self::same(&p.left, &q.left) && Self::same(&p.right, &q.right)
            }
            _ => false,
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @param {TreeNode} subRoot
 * @return {boolean}
 */
var isSubtree = function (root, subRoot) {
    const same = (p, q) => {
        if (!p || !q) {
            return p === q;
        }
        return p.val === q.val && same(p.left, q.left) && same(p.right, q.right);
    };
    if (!root) {
        return false;
    }
    return same(root, subRoot) || isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
};

Comments