Skip to content

480. Sliding Window Median

Description

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle values.

  • For examples, if arr = [2,3,4], the median is 3.
  • For examples, if arr = [1,2,3,4], the median is (2 + 3) / 2 = 2.5.

You are given an integer array nums and an integer k. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

Return the median array for each window in the original array. Answers within 10-5 of the actual value will be accepted.

 

Example 1:

Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [1.00000,-1.00000,-1.00000,3.00000,5.00000,6.00000]
Explanation: 
Window position                Median
---------------                -----
[1  3  -1] -3  5  3  6  7        1
 1 [3  -1  -3] 5  3  6  7       -1
 1  3 [-1  -3  5] 3  6  7       -1
 1  3  -1 [-3  5  3] 6  7        3
 1  3  -1  -3 [5  3  6] 7        5
 1  3  -1  -3  5 [3  6  7]       6

Example 2:

Input: nums = [1,2,3,4,2,3,1,4,2], k = 3
Output: [2.00000,3.00000,3.00000,3.00000,2.00000,3.00000,2.00000]

 

Constraints:

  • 1 <= k <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

Solutions

Solution 1: Dual Priority Queues (Min-Heap and Max-Heap) + Lazy Deletion

We can use two priority queues (min-heap and max-heap) to maintain the elements in the current window. One priority queue stores the smaller half of the elements, and the other priority queue stores the larger half of the elements. This way, the median of the current window is either the average of the top elements of the two heaps or one of the top elements.

We design a class $\textit{MedianFinder}$ to maintain the elements in the current window. This class includes the following methods:

  • add_num(num): Adds $\textit{num}$ to the current window.
  • find_median(): Returns the median of the elements in the current window.
  • remove_num(num): Removes $\textit{num}$ from the current window.
  • prune(pq): If the top element of the heap is in the lazy deletion dictionary $\textit{delayed}$, it pops the top element from the heap and decrements its lazy deletion count. If the lazy deletion count of the element becomes zero, it removes the element from the lazy deletion dictionary.
  • rebalance(): If the number of elements in the smaller half exceeds the number of elements in the larger half by $2$, it moves the top element of the larger half to the smaller half. If the number of elements in the smaller half is less than the number of elements in the larger half, it moves the top element of the larger half to the smaller half.

In the add_num(num) method, we first consider adding $\textit{num}$ to the smaller half. If $\textit{num}$ is greater than the top element of the larger half, we add $\textit{num}$ to the larger half. Then we call the rebalance() method to ensure that the size difference between the two priority queues does not exceed $1$.

In the remove_num(num) method, we increment the lazy deletion count of $\textit{num}$. Then we compare $\textit{num}$ with the top element of the smaller half. If $\textit{num}$ is less than or equal to the top element of the smaller half, we update the size of the smaller half and call the prune() method to ensure that the top element of the smaller half is not in the lazy deletion dictionary. Otherwise, we update the size of the larger half and call the prune() method to ensure that the top element of the larger half is not in the lazy deletion dictionary.

In the find_median() method, if the current window size is odd, we return the top element of the smaller half; otherwise, we return the average of the top elements of the smaller half and the larger half.

In the prune(pq) method, if the top element of the heap is in the lazy deletion dictionary, it pops the top element from the heap and decrements its lazy deletion count. If the lazy deletion count of the element becomes zero, it removes the element from the lazy deletion dictionary.

In the rebalance() method, if the number of elements in the smaller half exceeds the number of elements in the larger half by $2$, it moves the top element of the larger half to the smaller half. If the number of elements in the smaller half is less than the number of elements in the larger half, it moves the top element of the larger half to the smaller half.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class MedianFinder:
    def __init__(self, k: int):
        self.k = k
        self.small = []
        self.large = []
        self.delayed = defaultdict(int)
        self.small_size = 0
        self.large_size = 0

    def add_num(self, num: int):
        if not self.small or num <= -self.small[0]:
            heappush(self.small, -num)
            self.small_size += 1
        else:
            heappush(self.large, num)
            self.large_size += 1
        self.rebalance()

    def find_median(self) -> float:
        return -self.small[0] if self.k & 1 else (-self.small[0] + self.large[0]) / 2

    def remove_num(self, num: int):
        self.delayed[num] += 1
        if num <= -self.small[0]:
            self.small_size -= 1
            if num == -self.small[0]:
                self.prune(self.small)
        else:
            self.large_size -= 1
            if num == self.large[0]:
                self.prune(self.large)
        self.rebalance()

    def prune(self, pq: List[int]):
        sign = -1 if pq is self.small else 1
        while pq and sign * pq[0] in self.delayed:
            self.delayed[sign * pq[0]] -= 1
            if self.delayed[sign * pq[0]] == 0:
                self.delayed.pop(sign * pq[0])
            heappop(pq)

    def rebalance(self):
        if self.small_size > self.large_size + 1:
            heappush(self.large, -heappop(self.small))
            self.small_size -= 1
            self.large_size += 1
            self.prune(self.small)
        elif self.small_size < self.large_size:
            heappush(self.small, -heappop(self.large))
            self.large_size -= 1
            self.small_size += 1
            self.prune(self.large)


class Solution:
    def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
        finder = MedianFinder(k)
        for x in nums[:k]:
            finder.add_num(x)
        ans = [finder.find_median()]
        for i in range(k, len(nums)):
            finder.add_num(nums[i])
            finder.remove_num(nums[i - k])
            ans.append(finder.find_median())
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class MedianFinder {
    private PriorityQueue<Integer> small = new PriorityQueue<>(Comparator.reverseOrder());
    private PriorityQueue<Integer> large = new PriorityQueue<>();
    private Map<Integer, Integer> delayed = new HashMap<>();
    private int smallSize;
    private int largeSize;
    private int k;

    public MedianFinder(int k) {
        this.k = k;
    }

    public void addNum(int num) {
        if (small.isEmpty() || num <= small.peek()) {
            small.offer(num);
            ++smallSize;
        } else {
            large.offer(num);
            ++largeSize;
        }
        rebalance();
    }

    public double findMedian() {
        return (k & 1) == 1 ? small.peek() : ((double) small.peek() + large.peek()) / 2;
    }

    public void removeNum(int num) {
        delayed.merge(num, 1, Integer::sum);
        if (num <= small.peek()) {
            --smallSize;
            if (num == small.peek()) {
                prune(small);
            }
        } else {
            --largeSize;
            if (num == large.peek()) {
                prune(large);
            }
        }
        rebalance();
    }

    private void prune(PriorityQueue<Integer> pq) {
        while (!pq.isEmpty() && delayed.containsKey(pq.peek())) {
            if (delayed.merge(pq.peek(), -1, Integer::sum) == 0) {
                delayed.remove(pq.peek());
            }
            pq.poll();
        }
    }

    private void rebalance() {
        if (smallSize > largeSize + 1) {
            large.offer(small.poll());
            --smallSize;
            ++largeSize;
            prune(small);
        } else if (smallSize < largeSize) {
            small.offer(large.poll());
            --largeSize;
            ++smallSize;
            prune(large);
        }
    }
}

class Solution {
    public double[] medianSlidingWindow(int[] nums, int k) {
        MedianFinder finder = new MedianFinder(k);
        for (int i = 0; i < k; ++i) {
            finder.addNum(nums[i]);
        }
        int n = nums.length;
        double[] ans = new double[n - k + 1];
        ans[0] = finder.findMedian();
        for (int i = k; i < n; ++i) {
            finder.addNum(nums[i]);
            finder.removeNum(nums[i - k]);
            ans[i - k + 1] = finder.findMedian();
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
class MedianFinder {
public:
    MedianFinder(int k) {
        this->k = k;
    }

    void addNum(int num) {
        if (small.empty() || num <= small.top()) {
            small.push(num);
            ++smallSize;
        } else {
            large.push(num);
            ++largeSize;
        }
        reblance();
    }

    void removeNum(int num) {
        ++delayed[num];
        if (num <= small.top()) {
            --smallSize;
            if (num == small.top()) {
                prune(small);
            }
        } else {
            --largeSize;
            if (num == large.top()) {
                prune(large);
            }
        }
        reblance();
    }

    double findMedian() {
        return k & 1 ? small.top() : ((double) small.top() + large.top()) / 2.0;
    }

private:
    priority_queue<int> small;
    priority_queue<int, vector<int>, greater<int>> large;
    unordered_map<int, int> delayed;
    int smallSize = 0;
    int largeSize = 0;
    int k;

    template <typename T>
    void prune(T& pq) {
        while (!pq.empty() && delayed[pq.top()]) {
            if (--delayed[pq.top()] == 0) {
                delayed.erase(pq.top());
            }
            pq.pop();
        }
    }

    void reblance() {
        if (smallSize > largeSize + 1) {
            large.push(small.top());
            small.pop();
            --smallSize;
            ++largeSize;
            prune(small);
        } else if (smallSize < largeSize) {
            small.push(large.top());
            large.pop();
            ++smallSize;
            --largeSize;
            prune(large);
        }
    }
};

class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        MedianFinder finder(k);
        for (int i = 0; i < k; ++i) {
            finder.addNum(nums[i]);
        }
        vector<double> ans = {finder.findMedian()};
        for (int i = k; i < nums.size(); ++i) {
            finder.addNum(nums[i]);
            finder.removeNum(nums[i - k]);
            ans.push_back(finder.findMedian());
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
type MedianFinder struct {
    small                hp
    large                hp
    delayed              map[int]int
    smallSize, largeSize int
    k                    int
}

func Constructor(k int) MedianFinder {
    return MedianFinder{hp{}, hp{}, map[int]int{}, 0, 0, k}
}

func (this *MedianFinder) AddNum(num int) {
    if this.small.Len() == 0 || num <= -this.small.IntSlice[0] {
        heap.Push(&this.small, -num)
        this.smallSize++
    } else {
        heap.Push(&this.large, num)
        this.largeSize++
    }
    this.rebalance()
}

func (this *MedianFinder) FindMedian() float64 {
    if this.k&1 == 1 {
        return float64(-this.small.IntSlice[0])
    }
    return float64(-this.small.IntSlice[0]+this.large.IntSlice[0]) / 2
}

func (this *MedianFinder) removeNum(num int) {
    this.delayed[num]++
    if num <= -this.small.IntSlice[0] {
        this.smallSize--
        if num == -this.small.IntSlice[0] {
            this.prune(&this.small)
        }
    } else {
        this.largeSize--
        if num == this.large.IntSlice[0] {
            this.prune(&this.large)
        }
    }
    this.rebalance()
}

func (this *MedianFinder) prune(pq *hp) {
    sign := 1
    if pq == &this.small {
        sign = -1
    }
    for pq.Len() > 0 && this.delayed[sign*pq.IntSlice[0]] > 0 {
        this.delayed[sign*pq.IntSlice[0]]--
        if this.delayed[sign*pq.IntSlice[0]] == 0 {
            delete(this.delayed, sign*pq.IntSlice[0])
        }
        heap.Pop(pq)
    }
}

func (this *MedianFinder) rebalance() {
    if this.smallSize > this.largeSize+1 {
        heap.Push(&this.large, -heap.Pop(&this.small).(int))
        this.smallSize--
        this.largeSize++
        this.prune(&this.small)
    } else if this.smallSize < this.largeSize {
        heap.Push(&this.small, -heap.Pop(&this.large).(int))
        this.smallSize++
        this.largeSize--
        this.prune(&this.large)
    }
}

func medianSlidingWindow(nums []int, k int) []float64 {
    finder := Constructor(k)
    for _, num := range nums[:k] {
        finder.AddNum(num)
    }
    ans := []float64{finder.FindMedian()}
    for i := k; i < len(nums); i++ {
        finder.AddNum(nums[i])
        finder.removeNum(nums[i-k])
        ans = append(ans, finder.FindMedian())
    }
    return ans
}

type hp struct{ sort.IntSlice }

func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v any)        { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
    a := h.IntSlice
    v := a[len(a)-1]
    h.IntSlice = a[:len(a)-1]
    return v
}

Solution 2: Ordered Set

We can use two ordered sets to maintain the elements in the current window. The ordered set $l$ stores the smaller half of the elements in the current window, and the ordered set $r$ stores the larger half of the elements.

We traverse the array $\textit{nums}$. For each element $x$, we add it to the ordered set $r$, then move the smallest element in the ordered set $r$ to the ordered set $l$. If the size of the ordered set $l$ is greater than the size of the ordered set $r$ by more than $1$, we move the largest element in the ordered set $l$ to the ordered set $r$.

If the total number of elements in the current window is $k$ and the size is odd, the maximum value in the ordered set $l$ is the median. If the size of the current window is even, the average of the maximum value in the ordered set $l$ and the minimum value in the ordered set $r$ is the median. Then, we remove the leftmost element of the window and continue traversing the array.

The time complexity is $O(n \log k)$, and the space complexity is $O(k)$. Here, $n$ is the length of the array $\textit{nums}$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
from sortedcontainers import SortedList


class Solution:
    def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
        l = SortedList()
        r = SortedList()
        ans = []
        for i, x in enumerate(nums):
            r.add(x)
            l.add(r.pop(0))
            while len(l) - len(r) > 1:
                r.add(l.pop())
            j = i - k + 1
            if j >= 0:
                ans.append(l[-1] if k & 1 else (l[-1] + r[0]) / 2)
                if nums[j] in l:
                    l.remove(nums[j])
                else:
                    r.remove(nums[j])
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
    public double[] medianSlidingWindow(int[] nums, int k) {
        TreeMap<Integer, Integer> l = new TreeMap<>();
        TreeMap<Integer, Integer> r = new TreeMap<>();
        int n = nums.length;
        double[] ans = new double[n - k + 1];
        int lSize = 0, rSize = 0;
        for (int i = 0; i < n; ++i) {
            r.merge(nums[i], 1, Integer::sum);
            int x = r.firstKey();
            if (r.merge(x, -1, Integer::sum) == 0) {
                r.remove(x);
            }
            l.merge(x, 1, Integer::sum);
            ++lSize;
            while (lSize - rSize > 1) {
                x = l.lastKey();
                if (l.merge(x, -1, Integer::sum) == 0) {
                    l.remove(x);
                }
                r.merge(x, 1, Integer::sum);
                --lSize;
                ++rSize;
            }
            int j = i - k + 1;
            if (j >= 0) {
                ans[j] = k % 2 == 1 ? l.lastKey() : ((double) l.lastKey() + r.firstKey()) / 2;
                if (l.containsKey(nums[j])) {
                    if (l.merge(nums[j], -1, Integer::sum) == 0) {
                        l.remove(nums[j]);
                    }
                    --lSize;
                } else {
                    if (r.merge(nums[j], -1, Integer::sum) == 0) {
                        r.remove(nums[j]);
                    }
                    --rSize;
                }
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        multiset<int> l, r;
        int n = nums.size();
        vector<double> ans;
        for (int i = 0; i < n; ++i) {
            r.insert(nums[i]);
            l.insert(*r.begin());
            r.erase(r.begin());
            while (l.size() - r.size() > 1) {
                r.insert(*l.rbegin());
                l.erase(prev(l.end()));
            }
            int j = i - k + 1;
            if (j >= 0) {
                ans.push_back(k % 2 ? *l.rbegin() : ((double) *l.rbegin() + *r.begin()) / 2);
                auto it = l.find(nums[j]);
                if (it != l.end()) {
                    l.erase(it);
                } else {
                    r.erase(r.find(nums[j]));
                }
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
func medianSlidingWindow(nums []int, k int) (ans []float64) {
    l := redblacktree.New[int, int]()
    r := redblacktree.New[int, int]()
    merge := func(st *redblacktree.Tree[int, int], x, v int) {
        c, _ := st.Get(x)
        if c+v == 0 {
            st.Remove(x)
        } else {
            st.Put(x, c+v)
        }
    }
    lSize, rSize := 0, 0
    for i, x := range nums {
        merge(r, x, 1)
        x = r.Left().Key
        merge(r, x, -1)
        merge(l, x, 1)
        lSize++
        for lSize-rSize > 1 {
            x = l.Right().Key
            merge(l, x, -1)
            merge(r, x, 1)
            lSize--
            rSize++
        }
        if j := i - k + 1; j >= 0 {
            if k%2 == 1 {
                ans = append(ans, float64(l.Right().Key))
            } else {
                ans = append(ans, float64(l.Right().Key+r.Left().Key)/2)
            }
            if x = nums[j]; x <= l.Right().Key {
                merge(l, x, -1)
                lSize--
            } else {
                merge(r, x, -1)
                rSize--
            }
        }
    }
    return
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
function medianSlidingWindow(nums: number[], k: number): number[] {
    const l = new TreapMultiSet<number>((a, b) => a - b);
    const r = new TreapMultiSet<number>((a, b) => a - b);
    const n = nums.length;
    const ans: number[] = [];
    for (let i = 0; i < n; ++i) {
        r.add(nums[i]);
        l.add(r.shift()!);
        while (l.size - r.size > 1) {
            r.add(l.pop()!);
        }
        const j = i - k + 1;
        if (j >= 0) {
            ans[j] = k % 2 ? l.last()! : (l.last()! + r.first()!) / 2;
            if (nums[j] <= l.last()!) {
                l.delete(nums[j]);
            } else {
                r.delete(nums[j]);
            }
        }
    }
    return ans;
}

type CompareFunction<T, R extends 'number' | 'boolean'> = (
    a: T,
    b: T,
) => R extends 'number' ? number : boolean;

interface ITreapMultiSet<T> extends Iterable<T> {
    add: (...value: T[]) => this;
    has: (value: T) => boolean;
    delete: (value: T) => void;

    bisectLeft: (value: T) => number;
    bisectRight: (value: T) => number;

    indexOf: (value: T) => number;
    lastIndexOf: (value: T) => number;

    at: (index: number) => T | undefined;
    first: () => T | undefined;
    last: () => T | undefined;

    lower: (value: T) => T | undefined;
    higher: (value: T) => T | undefined;
    floor: (value: T) => T | undefined;
    ceil: (value: T) => T | undefined;

    shift: () => T | undefined;
    pop: (index?: number) => T | undefined;

    count: (value: T) => number;

    keys: () => IterableIterator<T>;
    values: () => IterableIterator<T>;
    rvalues: () => IterableIterator<T>;
    entries: () => IterableIterator<[number, T]>;

    readonly size: number;
}

class TreapNode<T = number> {
    value: T;
    count: number;
    size: number;
    priority: number;
    left: TreapNode<T> | null;
    right: TreapNode<T> | null;

    constructor(value: T) {
        this.value = value;
        this.count = 1;
        this.size = 1;
        this.priority = Math.random();
        this.left = null;
        this.right = null;
    }

    static getSize(node: TreapNode<any> | null): number {
        return node?.size ?? 0;
    }

    static getFac(node: TreapNode<any> | null): number {
        return node?.priority ?? 0;
    }

    pushUp(): void {
        let tmp = this.count;
        tmp += TreapNode.getSize(this.left);
        tmp += TreapNode.getSize(this.right);
        this.size = tmp;
    }

    rotateRight(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const left = node.left;
        node.left = left?.right ?? null;
        left && (left.right = node);
        left && (node = left);
        node.right?.pushUp();
        node.pushUp();
        return node;
    }

    rotateLeft(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const right = node.right;
        node.right = right?.left ?? null;
        right && (right.left = node);
        right && (node = right);
        node.left?.pushUp();
        node.pushUp();
        return node;
    }
}

class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
    private readonly root: TreapNode<T>;
    private readonly compareFn: CompareFunction<T, 'number'>;
    private readonly leftBound: T;
    private readonly rightBound: T;

    constructor(compareFn?: CompareFunction<T, 'number'>);
    constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
    constructor(
        compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
        leftBound: any = -Infinity,
        rightBound: any = Infinity,
    ) {
        this.root = new TreapNode<T>(rightBound);
        this.root.priority = Infinity;
        this.root.left = new TreapNode<T>(leftBound);
        this.root.left.priority = -Infinity;
        this.root.pushUp();

        this.leftBound = leftBound;
        this.rightBound = rightBound;
        this.compareFn = compareFn;
    }

    get size(): number {
        return this.root.size - 2;
    }

    get height(): number {
        const getHeight = (node: TreapNode<T> | null): number => {
            if (node == null) return 0;
            return 1 + Math.max(getHeight(node.left), getHeight(node.right));
        };

        return getHeight(this.root);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns true if value is a member.
     */
    has(value: T): boolean {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): boolean => {
            if (node == null) return false;
            if (compare(node.value, value) === 0) return true;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Add value to sorted set.
     */
    add(...values: T[]): this {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;
            if (compare(node.value, value) === 0) {
                node.count++;
                node.pushUp();
            } else if (compare(node.value, value) > 0) {
                if (node.left) {
                    dfs(node.left, value, node, 'left');
                } else {
                    node.left = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.left) > node.priority) {
                    parent[direction] = node.rotateRight();
                }
            } else if (compare(node.value, value) < 0) {
                if (node.right) {
                    dfs(node.right, value, node, 'right');
                } else {
                    node.right = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.right) > node.priority) {
                    parent[direction] = node.rotateLeft();
                }
            }
            parent.pushUp();
        };

        values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
        return this;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Remove value from sorted set if it is a member.
     * If value is not a member, do nothing.
     */
    delete(value: T): void {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;

            if (compare(node.value, value) === 0) {
                if (node.count > 1) {
                    node.count--;
                    node?.pushUp();
                } else if (node.left == null && node.right == null) {
                    parent[direction] = null;
                } else {
                    // 旋到根节点
                    if (
                        node.right == null ||
                        TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
                    ) {
                        parent[direction] = node.rotateRight();
                        dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
                    } else {
                        parent[direction] = node.rotateLeft();
                        dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
                    }
                }
            } else if (compare(node.value, value) > 0) {
                dfs(node.left, value, node, 'left');
            } else if (compare(node.value, value) < 0) {
                dfs(node.right, value, node, 'right');
            }

            parent?.pushUp();
        };

        dfs(this.root.left, value, this.root, 'left');
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the left of) any existing values.
     */
    bisectLeft(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the right of) any existing values.
     */
    bisectRight(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left) + node.count;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
     */
    indexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
     */
    lastIndexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left) + node.count - 1;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the item located at the specified index.
     * @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
     */
    at(index: number): T | undefined {
        if (index < 0) index += this.size;
        if (index < 0 || index >= this.size) return undefined;

        const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
            if (node == null) return undefined;

            if (TreapNode.getSize(node.left) >= rank) {
                return dfs(node.left, rank);
            } else if (TreapNode.getSize(node.left) + node.count >= rank) {
                return node.value;
            } else {
                return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
            }
        };

        const res = dfs(this.root, index + 2);
        return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than `val`, return `undefined` if no such element found.
     */
    lower(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than `val`, return `undefined` if no such element found.
     */
    higher(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
     */
    floor(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
     */
    ceil(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned.
     */
    first(): T | undefined {
        const iter = this.inOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned .
     */
    last(): T | undefined {
        const iter = this.reverseInOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.leftBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the first element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the last element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    pop(index?: number): T | undefined {
        if (index == null) {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }

        const toDelete = this.at(index);
        if (toDelete == null) return;
        this.delete(toDelete);
        return toDelete;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description
     * Returns number of occurrences of value in the sorted set.
     */
    count(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;
            if (compare(node.value, value) === 0) return node.count;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    *[Symbol.iterator](): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of keys in the set.
     */
    *keys(): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of values in the set.
     */
    *values(): Generator<T, any, any> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns a generator for reversed order traversing the set.
     */
    *rvalues(): Generator<T, any, any> {
        const iter = this.reverseInOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns an iterable of key, value pairs for every entry in the set.
     */
    *entries(): IterableIterator<[number, T]> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let i = 0; i < steps; i++) {
            yield [i, iter.next().value];
        }
    }

    private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.inOrder(root.left);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.inOrder(root.right);
    }

    private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.reverseInOrder(root.right);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.reverseInOrder(root.left);
    }
}

Comments