453. Minimum Moves to Equal Array Elements
Description
Given an integer array nums
of size n
, return the minimum number of moves required to make all array elements equal.
In one move, you can increment n - 1
elements of the array by 1
.
Example 1:
Input: nums = [1,2,3] Output: 3 Explanation: Only three moves are needed (remember each move increments two elements): [1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
Example 2:
Input: nums = [1,1,1] Output: 0
Constraints:
n == nums.length
1 <= nums.length <= 105
-109 <= nums[i] <= 109
- The answer is guaranteed to fit in a 32-bit integer.
Solutions
Solution 1: Mathematics
Let the minimum value of the array $\textit{nums}$ be $\textit{mi}$, the sum of the array be $\textit{s}$, and the length of the array be $\textit{n}$.
Assume the minimum number of operations is $\textit{k}$, and the final value of all elements in the array is $\textit{x}$. Then we have:
$$ \begin{aligned} \textit{s} + (\textit{n} - 1) \times \textit{k} &= \textit{n} \times \textit{x} \ \textit{x} &= \textit{mi} + \textit{k} \ \end{aligned} $$
Substituting the second equation into the first equation, we get:
$$ \begin{aligned} \textit{s} + (\textit{n} - 1) \times \textit{k} &= \textit{n} \times (\textit{mi} + \textit{k}) \ \textit{s} + (\textit{n} - 1) \times \textit{k} &= \textit{n} \times \textit{mi} + \textit{n} \times \textit{k} \ \textit{k} &= \textit{s} - \textit{n} \times \textit{mi} \ \end{aligned} $$
Therefore, the minimum number of operations is $\textit{s} - \textit{n} \times \textit{mi}$.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array.
1 2 3 |
|
1 2 3 4 5 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 |
|