Skip to content

386. Lexicographical Numbers

Description

Given an integer n, return all the numbers in the range [1, n] sorted in lexicographical order.

You must write an algorithm that runs in O(n) time and uses O(1) extra space. 

 

Example 1:

Input: n = 13
Output: [1,10,11,12,13,2,3,4,5,6,7,8,9]

Example 2:

Input: n = 2
Output: [1,2]

 

Constraints:

  • 1 <= n <= 5 * 104

Solutions

Solution 1: Iteration

We first define a variable $v$, initially $v = 1$. Then we start iterating from $1$, adding $v$ to the answer array each time. Then, if $v \times 10 \leq n$, we update $v$ to $v \times 10$; otherwise, if $v \bmod 10 = 9$ or $v + 1 > n$, we loop to divide $v$ by $10$. After the loop ends, we increment $v$. Continue iterating until we have added $n$ numbers to the answer array.

The time complexity is $O(n)$, where $n$ is the given integer $n$. Ignoring the space consumption of the answer array, the space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution:
    def lexicalOrder(self, n: int) -> List[int]:
        ans = []
        v = 1
        for _ in range(n):
            ans.append(v)
            if v * 10 <= n:
                v *= 10
            else:
                while v % 10 == 9 or v + 1 > n:
                    v //= 10
                v += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    public List<Integer> lexicalOrder(int n) {
        List<Integer> ans = new ArrayList<>(n);
        int v = 1;
        for (int i = 0; i < n; ++i) {
            ans.add(v);
            if (v * 10 <= n) {
                v *= 10;
            } else {
                while (v % 10 == 9 || v + 1 > n) {
                    v /= 10;
                }
                ++v;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
    vector<int> lexicalOrder(int n) {
        vector<int> ans;
        int v = 1;
        for (int i = 0; i < n; ++i) {
            ans.push_back(v);
            if (v * 10 <= n) {
                v *= 10;
            } else {
                while (v % 10 == 9 || v + 1 > n) {
                    v /= 10;
                }
                ++v;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func lexicalOrder(n int) (ans []int) {
    v := 1
    for i := 0; i < n; i++ {
        ans = append(ans, v)
        if v*10 <= n {
            v *= 10
        } else {
            for v%10 == 9 || v+1 > n {
                v /= 10
            }
            v++
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
function lexicalOrder(n: number): number[] {
    const ans: number[] = [];
    let v = 1;
    for (let i = 0; i < n; ++i) {
        ans.push(v);
        if (v * 10 <= n) {
            v *= 10;
        } else {
            while (v % 10 === 9 || v === n) {
                v = Math.floor(v / 10);
            }
            ++v;
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
impl Solution {
    pub fn lexical_order(n: i32) -> Vec<i32> {
        let mut ans = Vec::with_capacity(n as usize);
        let mut v = 1;
        for _ in 0..n {
            ans.push(v);
            if v * 10 <= n {
                v *= 10;
            } else {
                while v % 10 == 9 || v + 1 > n {
                    v /= 10;
                }
                v += 1;
            }
        }
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
/**
 * @param {number} n
 * @return {number[]}
 */
var lexicalOrder = function (n) {
    const ans = [];
    let v = 1;
    for (let i = 0; i < n; ++i) {
        ans.push(v);
        if (v * 10 <= n) {
            v *= 10;
        } else {
            while (v % 10 === 9 || v === n) {
                v = Math.floor(v / 10);
            }
            ++v;
        }
    }
    return ans;
};

Comments