3418. Maximum Amount of Money Robot Can Earn
Description
You are given an m x n
grid. A robot starts at the top-left corner of the grid (0, 0)
and wants to reach the bottom-right corner (m - 1, n - 1)
. The robot can move either right or down at any point in time.
The grid contains a value coins[i][j]
in each cell:
- If
coins[i][j] >= 0
, the robot gains that many coins. - If
coins[i][j] < 0
, the robot encounters a robber, and the robber steals the absolute value ofcoins[i][j]
coins.
The robot has a special ability to neutralize robbers in at most 2 cells on its path, preventing them from stealing coins in those cells.
Note: The robot's total coins can be negative.
Return the maximum profit the robot can gain on the route.
Example 1:
Input: coins = [[0,1,-1],[1,-2,3],[2,-3,4]]
Output: 8
Explanation:
An optimal path for maximum coins is:
- Start at
(0, 0)
with0
coins (total coins =0
). - Move to
(0, 1)
, gaining1
coin (total coins =0 + 1 = 1
). - Move to
(1, 1)
, where there's a robber stealing2
coins. The robot uses one neutralization here, avoiding the robbery (total coins =1
). - Move to
(1, 2)
, gaining3
coins (total coins =1 + 3 = 4
). - Move to
(2, 2)
, gaining4
coins (total coins =4 + 4 = 8
).
Example 2:
Input: coins = [[10,10,10],[10,10,10]]
Output: 40
Explanation:
An optimal path for maximum coins is:
- Start at
(0, 0)
with10
coins (total coins =10
). - Move to
(0, 1)
, gaining10
coins (total coins =10 + 10 = 20
). - Move to
(0, 2)
, gaining another10
coins (total coins =20 + 10 = 30
). - Move to
(1, 2)
, gaining the final10
coins (total coins =30 + 10 = 40
).
Constraints:
m == coins.length
n == coins[i].length
1 <= m, n <= 500
-1000 <= coins[i][j] <= 1000
Solutions
Solution 1: Memoized Search
We design a function $\textit{dfs}(i, j, k)$, which represents the maximum amount of coins the robot can collect starting from $(i, j)$ with $k$ conversion opportunities left. The robot can only move right or down, so the value of $\textit{dfs}(i, j, k)$ depends only on $\textit{dfs}(i + 1, j, k)$ and $\textit{dfs}(i, j + 1, k)$.
- If $i \geq m$ or $j \geq n$, it means the robot has moved out of the grid, so we return a very small value.
- If $i = m - 1$ and $j = n - 1$, it means the robot has reached the bottom-right corner of the grid. If $k > 0$, the robot can choose to convert the bandit at the current position, so we return $\max(0, \textit{coins}[i][j])$. If $k = 0$, the robot cannot convert the bandit at the current position, so we return $\textit{coins}[i][j]$.
- If $\textit{coins}[i][j] < 0$, it means there is a bandit at the current position. If $k > 0$, the robot can choose to convert the bandit at the current position, so we return $\textit{coins}[i][j] + \max(\textit{dfs}(i + 1, j, k), \textit{dfs}(i, j + 1, k))$. If $k = 0$, the robot cannot convert the bandit at the current position, so we return $\textit{coins}[i][j] + \max(\textit{dfs}(i + 1, j, k), \textit{dfs}(i, j + 1, k))$.
Based on the above analysis, we can write the code for memoized search.
The time complexity is $O(m \times n \times k)$, and the space complexity is $O(m \times n \times k)$. Here, $m$ and $n$ are the number of rows and columns of the 2D array $\textit{coins}$, and $k$ is the number of conversion opportunities, which is $3$ in this problem.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|