Description
You are given an array of positive integers nums
.
An array arr
is called product equivalent if prod(arr) == lcm(arr) * gcd(arr)
, where:
prod(arr)
is the product of all elements of arr
.
gcd(arr)
is the GCD of all elements of arr
.
lcm(arr)
is the LCM of all elements of arr
.
Return the length of the longest product equivalent subarray of nums
.
A subarray is a contiguous non-empty sequence of elements within an array.
The term gcd(a, b)
denotes the greatest common divisor of a
and b
.
The term lcm(a, b)
denotes the least common multiple of a
and b
.
Example 1:
Input: nums = [1,2,1,2,1,1,1]
Output: 5
Explanation:
The longest product equivalent subarray is [1, 2, 1, 1, 1]
, where prod([1, 2, 1, 1, 1]) = 2
, gcd([1, 2, 1, 1, 1]) = 1
, and lcm([1, 2, 1, 1, 1]) = 2
.
Example 2:
Input: nums = [2,3,4,5,6]
Output: 3
Explanation:
The longest product equivalent subarray is [3, 4, 5].
Example 3:
Input: nums = [1,2,3,1,4,5,1]
Output: 5
Constraints:
2 <= nums.length <= 100
1 <= nums[i] <= 10
Solutions
Solution 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution:
def maxLength(self, nums: List[int]) -> int:
n = len(nums)
ans = 0
max_p = lcm(*nums) * max(nums)
for i in range(n):
p, g, l = 1, 0, 1
for j in range(i, n):
p *= nums[j]
g = gcd(g, nums[j])
l = lcm(l, nums[j])
if p == g * l:
ans = max(ans, j - i + 1)
if p > max_p:
break
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | class Solution {
public int maxLength(int[] nums) {
int mx = 0, ml = 1;
for (int x : nums) {
mx = Math.max(mx, x);
ml = lcm(ml, x);
}
int maxP = ml * mx;
int n = nums.length;
int ans = 0;
for (int i = 0; i < n; ++i) {
int p = 1, g = 0, l = 1;
for (int j = i; j < n; ++j) {
p *= nums[j];
g = gcd(g, nums[j]);
l = lcm(l, nums[j]);
if (p == g * l) {
ans = Math.max(ans, j - i + 1);
}
if (p > maxP) {
break;
}
}
}
return ans;
}
private int gcd(int a, int b) {
while (b != 0) {
int temp = b;
b = a % b;
a = temp;
}
return a;
}
private int lcm(int a, int b) {
return a / gcd(a, b) * b;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int maxLength(vector<int>& nums) {
int mx = 0, ml = 1;
for (int x : nums) {
mx = max(mx, x);
ml = lcm(ml, x);
}
long long maxP = (long long) ml * mx;
int n = nums.size();
int ans = 0;
for (int i = 0; i < n; ++i) {
long long p = 1, g = 0, l = 1;
for (int j = i; j < n; ++j) {
p *= nums[j];
g = gcd(g, nums[j]);
l = lcm(l, nums[j]);
if (p == g * l) {
ans = max(ans, j - i + 1);
}
if (p > maxP) {
break;
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | func maxLength(nums []int) int {
mx, ml := 0, 1
for _, x := range nums {
mx = max(mx, x)
ml = lcm(ml, x)
}
maxP := ml * mx
n := len(nums)
ans := 0
for i := 0; i < n; i++ {
p, g, l := 1, 0, 1
for j := i; j < n; j++ {
p *= nums[j]
g = gcd(g, nums[j])
l = lcm(l, nums[j])
if p == g*l {
ans = max(ans, j-i+1)
}
if p > maxP {
break
}
}
}
return ans
}
func gcd(a, b int) int {
for b != 0 {
a, b = b, a%b
}
return a
}
func lcm(a, b int) int {
return a / gcd(a, b) * b
}
|