3400. Maximum Number of Matching Indices After Right Shifts π
Description
You are given two integer arrays, nums1
and nums2
, of the same length.
An index i
is considered matching if nums1[i] == nums2[i]
.
Return the maximum number of matching indices after performing any number of right shifts on nums1
.
A right shift is defined as shifting the element at index i
to index (i + 1) % n
, for all indices.
Example 1:
Input: nums1 = [3,1,2,3,1,2], nums2 = [1,2,3,1,2,3]
Output: 6
Explanation:
If we right shift nums1
2 times, it becomes [1, 2, 3, 1, 2, 3]
. Every index matches, so the output is 6.
Example 2:
Input: nums1 = [1,4,2,5,3,1], nums2 = [2,3,1,2,4,6]
Output: 3
Explanation:
If we right shift nums1
3 times, it becomes [5, 3, 1, 1, 4, 2]
. Indices 1, 2, and 4 match, so the output is 3.
Constraints:
nums1.length == nums2.length
1 <= nums1.length, nums2.length <= 3000
1 <= nums1[i], nums2[i] <= 109
Solutions
Solution 1: Enumeration
We can enumerate the number of right shifts $k$, where $0 \leq k < n$. For each $k$, we can calculate the number of matching indices between the array $\textit{nums1}$ after right shifting $k$ times and $\textit{nums2}$. The maximum value is taken as the answer.
The time complexity is $O(n^2)$, where $n$ is the length of the array $\textit{nums1}$. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|