Description
You are given an array of integers nums
and an integer k
.
Return the maximum sum of a subarray of nums
, such that the size of the subarray is divisible by k
.
Example 1:
Input: nums = [1,2], k = 1
Output: 3
Explanation:
The subarray [1, 2]
with sum 3 has length equal to 2 which is divisible by 1.
Example 2:
Input: nums = [-1,-2,-3,-4,-5], k = 4
Output: -10
Explanation:
The maximum sum subarray is [-1, -2, -3, -4]
which has length equal to 4 which is divisible by 4.
Example 3:
Input: nums = [-5,1,2,-3,4], k = 2
Output: 4
Explanation:
The maximum sum subarray is [1, 2, -3, 4]
which has length equal to 4 which is divisible by 2.
Constraints:
1 <= k <= nums.length <= 2 * 105
-109 <= nums[i] <= 109
Solutions
Solution 1
| class Solution:
def maxSubarraySum(self, nums: List[int], k: int) -> int:
f = [inf] * k
ans = -inf
s = f[-1] = 0
for i, x in enumerate(nums):
s += x
ans = max(ans, s - f[i % k])
f[i % k] = min(f[i % k], s)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public long maxSubarraySum(int[] nums, int k) {
long[] f = new long[k];
final long inf = 1L << 62;
Arrays.fill(f, inf);
f[k - 1] = 0;
long s = 0;
long ans = -inf;
for (int i = 0; i < nums.length; ++i) {
s += nums[i];
ans = Math.max(ans, s - f[i % k]);
f[i % k] = Math.min(f[i % k], s);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
long long maxSubarraySum(vector<int>& nums, int k) {
using ll = long long;
ll inf = 1e18;
vector<ll> f(k, inf);
ll ans = -inf;
ll s = 0;
f[k - 1] = 0;
for (int i = 0; i < nums.size(); ++i) {
s += nums[i];
ans = max(ans, s - f[i % k]);
f[i % k] = min(f[i % k], s);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | func maxSubarraySum(nums []int, k int) int64 {
inf := int64(1) << 62
f := make([]int64, k)
for i := range f {
f[i] = inf
}
f[k-1] = 0
var s, ans int64
ans = -inf
for i := 0; i < len(nums); i++ {
s += int64(nums[i])
ans = max(ans, s-f[i%k])
f[i%k] = min(f[i%k], s)
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12 | function maxSubarraySum(nums: number[], k: number): number {
const f: number[] = Array(k).fill(Infinity);
f[k - 1] = 0;
let ans = -Infinity;
let s = 0;
for (let i = 0; i < nums.length; ++i) {
s += nums[i];
ans = Math.max(ans, s - f[i % k]);
f[i % k] = Math.min(f[i % k], s);
}
return ans;
}
|