Skip to content

3266. Final Array State After K Multiplication Operations II

Description

You are given an integer array nums, an integer k, and an integer multiplier.

You need to perform k operations on nums. In each operation:

  • Find the minimum value x in nums. If there are multiple occurrences of the minimum value, select the one that appears first.
  • Replace the selected minimum value x with x * multiplier.

After the k operations, apply modulo 109 + 7 to every value in nums.

Return an integer array denoting the final state of nums after performing all k operations and then applying the modulo.

 

Example 1:

Input: nums = [2,1,3,5,6], k = 5, multiplier = 2

Output: [8,4,6,5,6]

Explanation:

Operation Result
After operation 1 [2, 2, 3, 5, 6]
After operation 2 [4, 2, 3, 5, 6]
After operation 3 [4, 4, 3, 5, 6]
After operation 4 [4, 4, 6, 5, 6]
After operation 5 [8, 4, 6, 5, 6]
After applying modulo [8, 4, 6, 5, 6]

Example 2:

Input: nums = [100000,2000], k = 2, multiplier = 1000000

Output: [999999307,999999993]

Explanation:

Operation Result
After operation 1 [100000, 2000000000]
After operation 2 [100000000000, 2000000000]
After applying modulo [999999307, 999999993]

 

Constraints:

  • 1 <= nums.length <= 104
  • 1 <= nums[i] <= 109
  • 1 <= k <= 109
  • 1 <= multiplier <= 106

Solutions

Solution 1: Priority Queue (Min-Heap) + Simulation

Let the length of the array $\textit{nums}$ be $n$, and the maximum value be $m$.

We first use a priority queue (min-heap) to simulate the operations until we complete $k$ operations or all elements in the heap are greater than or equal to $m$.

At this point, all elements in the array are less than $m \times \textit{multiplier}$. Since $1 \leq m \leq 10^9$ and $1 \leq \textit{multiplier} \leq 10^6$, $m \times \textit{multiplier} \leq 10^{15}$, which is within the range of a 64-bit integer.

Next, each operation will turn the smallest element in the array into the largest element. Therefore, after every $n$ consecutive operations, each element in the array will have undergone exactly one multiplication operation.

Thus, after the simulation, for the remaining $k$ operations, the smallest $k \bmod n$ elements in the array will undergo $\lfloor k / n \rfloor + 1$ multiplication operations, while the other elements will undergo $\lfloor k / n \rfloor$ multiplication operations.

Finally, we multiply each element in the array by the corresponding number of multiplication operations and take the result modulo $10^9 + 7$. This can be calculated using fast exponentiation.

The time complexity is $O(n \times \log n \times \log M + n \times \log k)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$, and $M$ is the maximum value in the array $\textit{nums}$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def getFinalState(self, nums: List[int], k: int, multiplier: int) -> List[int]:
        if multiplier == 1:
            return nums
        pq = [(x, i) for i, x in enumerate(nums)]
        heapify(pq)
        m = max(nums)
        while k and pq[0][0] < m:
            x, i = heappop(pq)
            heappush(pq, (x * multiplier, i))
            k -= 1
        n = len(nums)
        mod = 10**9 + 7
        pq.sort()
        for i, (x, j) in enumerate(pq):
            nums[j] = x * pow(multiplier, k // n + int(i < k % n), mod) % mod
        return nums
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
    public int[] getFinalState(int[] nums, int k, int multiplier) {
        if (multiplier == 1) {
            return nums;
        }
        PriorityQueue<long[]> pq = new PriorityQueue<>(
            (a, b) -> a[0] == b[0] ? Long.compare(a[1], b[1]) : Long.compare(a[0], b[0]));
        int n = nums.length;
        int m = Arrays.stream(nums).max().getAsInt();
        for (int i = 0; i < n; ++i) {
            pq.offer(new long[] {nums[i], i});
        }
        for (; k > 0 && pq.peek()[0] < m; --k) {
            long[] p = pq.poll();
            p[0] *= multiplier;
            pq.offer(p);
        }
        final int mod = (int) 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            long[] p = pq.poll();
            long x = p[0];
            int j = (int) p[1];
            nums[j] = (int) ((x % mod) * qpow(multiplier, k / n + (i < k % n ? 1 : 0), mod) % mod);
        }
        return nums;
    }

    private int qpow(long a, long n, long mod) {
        long ans = 1 % mod;
        for (; n > 0; n >>= 1) {
            if ((n & 1) == 1) {
                ans = ans * a % mod;
            }
            a = a * a % mod;
        }
        return (int) ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class Solution {
public:
    vector<int> getFinalState(vector<int>& nums, int k, int multiplier) {
        if (multiplier == 1) {
            return nums;
        }

        using ll = long long;
        using pli = pair<ll, int>;
        auto cmp = [](const pli& a, const pli& b) {
            if (a.first == b.first) {
                return a.second > b.second;
            }
            return a.first > b.first;
        };
        priority_queue<pli, vector<pli>, decltype(cmp)> pq(cmp);

        int n = nums.size();
        int m = *max_element(nums.begin(), nums.end());

        for (int i = 0; i < n; ++i) {
            pq.emplace(nums[i], i);
        }

        while (k > 0 && pq.top().first < m) {
            auto p = pq.top();
            pq.pop();
            p.first *= multiplier;
            pq.emplace(p);
            --k;
        }

        auto qpow = [&](ll a, ll n, ll mod) {
            ll ans = 1 % mod;
            a = a % mod;
            while (n > 0) {
                if (n & 1) {
                    ans = ans * a % mod;
                }
                a = a * a % mod;
                n >>= 1;
            }
            return ans;
        };

        const int mod = 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            auto p = pq.top();
            pq.pop();
            long long x = p.first;
            int j = p.second;
            nums[j] = static_cast<int>((x % mod) * qpow(multiplier, k / n + (i < k % n ? 1 : 0), mod) % mod);
        }

        return nums;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
func getFinalState(nums []int, k int, multiplier int) []int {
    if multiplier == 1 {
        return nums
    }
    n := len(nums)
    pq := make(hp, n)
    for i, x := range nums {
        pq[i] = pair{x, i}
    }
    heap.Init(&pq)
    m := slices.Max(nums)
    for ; k > 0 && pq[0].x < m; k-- {
        x := pq[0]
        heap.Pop(&pq)
        x.x *= multiplier
        heap.Push(&pq, x)
    }
    const mod int = 1e9 + 7

    for i := range nums {
        p := heap.Pop(&pq).(pair)
        x, j := p.x, p.i
        power := k / n
        if i < k%n {
            power++
        }
        nums[j] = (x % mod) * qpow(multiplier, power, mod) % mod
    }
    return nums
}

func qpow(a, n, mod int) int {
    ans := 1 % mod
    a = a % mod
    for n > 0 {
        if n&1 == 1 {
            ans = (ans * a) % mod
        }
        a = (a * a) % mod
        n >>= 1
    }
    return int(ans)
}

type pair struct{ x, i int }
type hp []pair

func (h hp) Len() int           { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].x < h[j].x || h[i].x == h[j].x && h[i].i < h[j].i }
func (h hp) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(x any)        { *h = append(*h, x.(pair)) }
func (h *hp) Pop() (x any)      { a := *h; x = a[len(a)-1]; *h = a[:len(a)-1]; return x }

Comments