3238. Find the Number of Winning Players
Description
You are given an integer n
representing the number of players in a game and a 2D array pick
where pick[i] = [xi, yi]
represents that the player xi
picked a ball of color yi
.
Player i
wins the game if they pick strictly more than i
balls of the same color. In other words,
- Player 0 wins if they pick any ball.
- Player 1 wins if they pick at least two balls of the same color.
- ...
- Player
i
wins if they pick at leasti + 1
balls of the same color.
Return the number of players who win the game.
Note that multiple players can win the game.
Example 1:
Input: n = 4, pick = [[0,0],[1,0],[1,0],[2,1],[2,1],[2,0]]
Output: 2
Explanation:
Player 0 and player 1 win the game, while players 2 and 3 do not win.
Example 2:
Input: n = 5, pick = [[1,1],[1,2],[1,3],[1,4]]
Output: 0
Explanation:
No player wins the game.
Example 3:
Input: n = 5, pick = [[1,1],[2,4],[2,4],[2,4]]
Output: 1
Explanation:
Player 2 wins the game by picking 3 balls with color 4.
Constraints:
2 <= n <= 10
1 <= pick.length <= 100
pick[i].length == 2
0 <= xi <= n - 1
0 <= yi <= 10
Solutions
Solution 1: Counting
We can use a 2D array $\textit{cnt}$ to record the number of balls of each color obtained by each player, and a hash table $\textit{s}$ to record the IDs of the winning players.
Traverse the $\textit{pick}$ array, for each element $[x, y]$, we increment $\textit{cnt}[x][y]$ by one. If $\textit{cnt}[x][y]$ is greater than $x$, we add $x$ to the hash table $\textit{s}$.
Finally, return the size of the hash table $\textit{s}$.
The time complexity is $O(m + n \times M)$, and the space complexity is $O(n \times M)$. Here, $m$ is the length of the $\textit{pick}$ array, and $n$ and $M$ are the number of players and the number of colors, respectively.
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 |
|