Skip to content

3129. Find All Possible Stable Binary Arrays I

Description

You are given 3 positive integers zero, one, and limit.

A binary array arr is called stable if:

  • The number of occurrences of 0 in arr is exactly zero.
  • The number of occurrences of 1 in arr is exactly one.
  • Each subarray of arr with a size greater than limit must contain both 0 and 1.

Return the total number of stable binary arrays.

Since the answer may be very large, return it modulo 109 + 7.

 

Example 1:

Input: zero = 1, one = 1, limit = 2

Output: 2

Explanation:

The two possible stable binary arrays are [1,0] and [0,1], as both arrays have a single 0 and a single 1, and no subarray has a length greater than 2.

Example 2:

Input: zero = 1, one = 2, limit = 1

Output: 1

Explanation:

The only possible stable binary array is [1,0,1].

Note that the binary arrays [1,1,0] and [0,1,1] have subarrays of length 2 with identical elements, hence, they are not stable.

Example 3:

Input: zero = 3, one = 3, limit = 2

Output: 14

Explanation:

All the possible stable binary arrays are [0,0,1,0,1,1], [0,0,1,1,0,1], [0,1,0,0,1,1], [0,1,0,1,0,1], [0,1,0,1,1,0], [0,1,1,0,0,1], [0,1,1,0,1,0], [1,0,0,1,0,1], [1,0,0,1,1,0], [1,0,1,0,0,1], [1,0,1,0,1,0], [1,0,1,1,0,0], [1,1,0,0,1,0], and [1,1,0,1,0,0].

 

Constraints:

  • 1 <= zero, one, limit <= 200

Solutions

We design a function \(dfs(i, j, k)\) to represent the number of stable binary arrays that satisfy the problem conditions when there are \(i\) \(0\)s and \(j\) \(1\)s left, and the next number to be filled is \(k\). The answer is \(dfs(zero, one, 0) + dfs(zero, one, 1)\).

The calculation process of the function \(dfs(i, j, k)\) is as follows:

  • If \(i < 0\) or \(j < 0\), return \(0\).
  • If \(i = 0\), return \(1\) when \(k = 1\) and \(j \leq \textit{limit}\), otherwise return \(0\).
  • If \(j = 0\), return \(1\) when \(k = 0\) and \(i \leq \textit{limit}\), otherwise return \(0\).
  • If \(k = 0\), we consider the case where the previous number is \(0\), \(dfs(i - 1, j, 0)\), and the case where the previous number is \(1\), \(dfs(i - 1, j, 1)\). If the previous number is \(0\), it may cause more than \(\textit{limit}\) \(0\)s in the subarray, i.e., the situation where the \(\textit{limit} + 1\)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
    def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int:
        @cache
        def dfs(i: int, j: int, k: int) -> int:
            if i == 0:
                return int(k == 1 and j <= limit)
            if j == 0:
                return int(k == 0 and i <= limit)
            if k == 0:
                return (
                    dfs(i - 1, j, 0)
                    + dfs(i - 1, j, 1)
                    - (0 if i - limit - 1 < 0 else dfs(i - limit - 1, j, 1))
                )
            return (
                dfs(i, j - 1, 0)
                + dfs(i, j - 1, 1)
                - (0 if j - limit - 1 < 0 else dfs(i, j - limit - 1, 0))
            )

        mod = 10**9 + 7
        ans = (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod
        dfs.cache_clear()
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
    private final int mod = (int) 1e9 + 7;
    private Long[][][] f;
    private int limit;

    public int numberOfStableArrays(int zero, int one, int limit) {
        f = new Long[zero + 1][one + 1][2];
        this.limit = limit;
        return (int) ((dfs(zero, one, 0) + dfs(zero, one, 1)) % mod);
    }

    private long dfs(int i, int j, int k) {
        if (i < 0 || j < 0) {
            return 0;
        }
        if (i == 0) {
            return k == 1 && j <= limit ? 1 : 0;
        }
        if (j == 0) {
            return k == 0 && i <= limit ? 1 : 0;
        }
        if (f[i][j][k] != null) {
            return f[i][j][k];
        }
        if (k == 0) {
            f[i][j][k] = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod;
        } else {
            f[i][j][k] = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod;
        }
        return f[i][j][k];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public:
    int numberOfStableArrays(int zero, int one, int limit) {
        const int mod = 1e9 + 7;
        using ll = long long;
        vector<vector<array<ll, 2>>> f = vector<vector<array<ll, 2>>>(zero + 1, vector<array<ll, 2>>(one + 1, {-1, -1}));
        auto dfs = [&](this auto&& dfs, int i, int j, int k) -> ll {
            if (i < 0 || j < 0) {
                return 0;
            }
            if (i == 0) {
                return k == 1 && j <= limit;
            }
            if (j == 0) {
                return k == 0 && i <= limit;
            }
            ll& res = f[i][j][k];
            if (res != -1) {
                return res;
            }
            if (k == 0) {
                res = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod;
            } else {
                res = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod;
            }
            return res;
        };
        return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
func numberOfStableArrays(zero int, one int, limit int) int {
    const mod int = 1e9 + 7
    f := make([][][2]int, zero+1)
    for i := range f {
        f[i] = make([][2]int, one+1)
        for j := range f[i] {
            f[i][j] = [2]int{-1, -1}
        }
    }
    var dfs func(i, j, k int) int
    dfs = func(i, j, k int) int {
        if i < 0 || j < 0 {
            return 0
        }
        if i == 0 {
            if k == 1 && j <= limit {
                return 1
            }
            return 0
        }
        if j == 0 {
            if k == 0 && i <= limit {
                return 1
            }
            return 0
        }
        res := &f[i][j][k]
        if *res != -1 {
            return *res
        }
        if k == 0 {
            *res = (dfs(i-1, j, 0) + dfs(i-1, j, 1) - dfs(i-limit-1, j, 1) + mod) % mod
        } else {
            *res = (dfs(i, j-1, 0) + dfs(i, j-1, 1) - dfs(i, j-limit-1, 0) + mod) % mod
        }
        return *res
    }
    return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function numberOfStableArrays(zero: number, one: number, limit: number): number {
    const mod = 1e9 + 7;
    const f: number[][][] = Array.from({ length: zero + 1 }, () =>
        Array.from({ length: one + 1 }, () => [-1, -1]),
    );

    const dfs = (i: number, j: number, k: number): number => {
        if (i < 0 || j < 0) {
            return 0;
        }
        if (i === 0) {
            return k === 1 && j <= limit ? 1 : 0;
        }
        if (j === 0) {
            return k === 0 && i <= limit ? 1 : 0;
        }
        let res = f[i][j][k];
        if (res !== -1) {
            return res;
        }
        if (k === 0) {
            res = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod;
        } else {
            res = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod;
        }
        return (f[i][j][k] = res);
    };

    return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod;
}

Solution 2: Dynamic Programming

We can also convert the memoization search of Solution 1 into dynamic programming.

We define \(f[i][j][k]\) as the number of stable binary arrays using \(i\) \(0\)s and \(j\) \(1\)s, and the last number is \(k\). So the answer is \(f[zero][one][0] + f[zero][one][1]\).

Initially, we have \(f[i][0][0] = 1\), where \(1 \leq i \leq \min(\textit{limit}, \textit{zero})\); and \(f[0][j][1] = 1\), where \(1 \leq j \leq \min(\textit{limit}, \textit{one})\).

The state transition equation is as follows:

  • \(f[i][j][0] = f[i - 1][j][0] + f[i - 1][j][1] - f[i - \textit{limit} - 1][j][1]\).
  • \(f[i][j][1] = f[i][j - 1][0] + f[i][j - 1][1] - f[i][j - \textit{limit} - 1][0]\).

The time complexity is \(O(zero \times one)\), and the space complexity is \(O(zero \times one)\).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int:
        mod = 10**9 + 7
        f = [[[0, 0] for _ in range(one + 1)] for _ in range(zero + 1)]
        for i in range(1, min(limit, zero) + 1):
            f[i][0][0] = 1
        for j in range(1, min(limit, one) + 1):
            f[0][j][1] = 1
        for i in range(1, zero + 1):
            for j in range(1, one + 1):
                x = 0 if i - limit - 1 < 0 else f[i - limit - 1][j][1]
                y = 0 if j - limit - 1 < 0 else f[i][j - limit - 1][0]
                f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x) % mod
                f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y) % mod
        return sum(f[zero][one]) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public int numberOfStableArrays(int zero, int one, int limit) {
        final int mod = (int) 1e9 + 7;
        long[][][] f = new long[zero + 1][one + 1][2];
        for (int i = 1; i <= Math.min(zero, limit); ++i) {
            f[i][0][0] = 1;
        }
        for (int j = 1; j <= Math.min(one, limit); ++j) {
            f[0][j][1] = 1;
        }
        for (int i = 1; i <= zero; ++i) {
            for (int j = 1; j <= one; ++j) {
                long x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1];
                long y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0];
                f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod;
                f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod;
            }
        }
        return (int) ((f[zero][one][0] + f[zero][one][1]) % mod);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int numberOfStableArrays(int zero, int one, int limit) {
        const int mod = 1e9 + 7;
        using ll = long long;
        ll f[zero + 1][one + 1][2];
        memset(f, 0, sizeof(f));
        for (int i = 1; i <= min(zero, limit); ++i) {
            f[i][0][0] = 1;
        }
        for (int j = 1; j <= min(one, limit); ++j) {
            f[0][j][1] = 1;
        }
        for (int i = 1; i <= zero; ++i) {
            for (int j = 1; j <= one; ++j) {
                ll x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1];
                ll y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0];
                f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod;
                f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod;
            }
        }
        return (f[zero][one][0] + f[zero][one][1]) % mod;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
func numberOfStableArrays(zero int, one int, limit int) int {
    const mod int = 1e9 + 7
    f := make([][][2]int, zero+1)
    for i := range f {
        f[i] = make([][2]int, one+1)
    }
    for i := 1; i <= min(zero, limit); i++ {
        f[i][0][0] = 1
    }
    for j := 1; j <= min(one, limit); j++ {
        f[0][j][1] = 1
    }
    for i := 1; i <= zero; i++ {
        for j := 1; j <= one; j++ {
            f[i][j][0] = (f[i-1][j][0] + f[i-1][j][1]) % mod
            if i-limit-1 >= 0 {
                f[i][j][0] = (f[i][j][0] - f[i-limit-1][j][1] + mod) % mod
            }
            f[i][j][1] = (f[i][j-1][0] + f[i][j-1][1]) % mod
            if j-limit-1 >= 0 {
                f[i][j][1] = (f[i][j][1] - f[i][j-limit-1][0] + mod) % mod
            }
        }
    }
    return (f[zero][one][0] + f[zero][one][1]) % mod
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function numberOfStableArrays(zero: number, one: number, limit: number): number {
    const mod = 1e9 + 7;
    const f: number[][][] = Array.from({ length: zero + 1 }, () =>
        Array.from({ length: one + 1 }, () => [0, 0]),
    );

    for (let i = 1; i <= Math.min(limit, zero); i++) {
        f[i][0][0] = 1;
    }
    for (let j = 1; j <= Math.min(limit, one); j++) {
        f[0][j][1] = 1;
    }

    for (let i = 1; i <= zero; i++) {
        for (let j = 1; j <= one; j++) {
            const x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1];
            const y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0];
            f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod;
            f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod;
        }
    }

    return (f[zero][one][0] + f[zero][one][1]) % mod;
}

Comments