3128. Right Triangles
Description
You are given a 2D boolean matrix grid
.
A collection of 3 elements of grid
is a right triangle if one of its elements is in the same row with another element and in the same column with the third element. The 3 elements may not be next to each other.
Return an integer that is the number of right triangles that can be made with 3 elements of grid
such that all of them have a value of 1.
Example 1:
0 | 1 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
Input: grid = [[0,1,0],[0,1,1],[0,1,0]]
Output: 2
Explanation:
There are two right triangles with elements of the value 1. Notice that the blue ones do not form a right triangle because the 3 elements are in the same column.
Example 2:
1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 |
Input: grid = [[1,0,0,0],[0,1,0,1],[1,0,0,0]]
Output: 0
Explanation:
There are no right triangles with elements of the value 1. Notice that the blue ones do not form a right triangle.
Example 3:
1 | 0 | 1 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 1 |
1 | 0 | 0 |
1 | 0 | 0 |
Input: grid = [[1,0,1],[1,0,0],[1,0,0]]
Output: 2
Explanation:
There are two right triangles with elements of the value 1.
Constraints:
1 <= grid.length <= 1000
1 <= grid[i].length <= 1000
0 <= grid[i][j] <= 1
Solutions
Solution 1: Counting + Enumeration
First, we can count the number of $1$s in each row and each column, and record them in the arrays $rows$ and $cols$.
Then, we enumerate each $1$. Suppose the current $1$ is in the $i$-th row and the $j$-th column. If we take this $1$ as the right angle of a right triangle, the other two right angles are in the $i$-th row and the $j$-th column. Therefore, the number of right triangles is $(rows[i] - 1) \times (cols[j] - 1)$. We add this to the total count.
The time complexity is $O(m \times n)$, and the space complexity is $O(m + n)$. Where $m$ and $n$ are the number of rows and columns in the matrix, respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|