287. Find the Duplicate Number
Description
Given an array of integers nums
containing n + 1
integers where each integer is in the range [1, n]
inclusive.
There is only one repeated number in nums
, return this repeated number.
You must solve the problem without modifying the array nums
and using only constant extra space.
Example 1:
Input: nums = [1,3,4,2,2] Output: 2
Example 2:
Input: nums = [3,1,3,4,2] Output: 3
Example 3:
Input: nums = [3,3,3,3,3] Output: 3
Constraints:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
- All the integers in
nums
appear only once except for precisely one integer which appears two or more times.
Follow up:
- How can we prove that at least one duplicate number must exist in
nums
? - Can you solve the problem in linear runtime complexity?
Solutions
Solution 1: Binary Search
We can observe that if the number of elements in \([1,..x]\) is greater than \(x\), then the duplicate number must be in \([1,..x]\), otherwise the duplicate number must be in \([x+1,..n]\).
Therefore, we can use binary search to find \(x\), and check whether the number of elements in \([1,..x]\) is greater than \(x\) at each iteration. This way, we can determine which interval the duplicate number is in, and narrow down the search range until we find the duplicate number.
The time complexity is \(O(n \times \log n)\), where \(n\) is the length of the array \(nums\). The space complexity is \(O(1)\).
1 2 3 4 5 6 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|