You are given a 0-indexed integer array nums and an integer x.
Find the minimum absolute difference between two elements in the array that are at least x indices apart.
In other words, find two indices i and j such that abs(i - j) >= x and abs(nums[i] - nums[j]) is minimized.
Return an integer denoting the minimum absolute difference between two elements that are at leastxindices apart.
Example 1:
Input: nums = [4,3,2,4], x = 2
Output: 0
Explanation: We can select nums[0] = 4 and nums[3] = 4.
They are at least 2 indices apart, and their absolute difference is the minimum, 0.
It can be shown that 0 is the optimal answer.
Example 2:
Input: nums = [5,3,2,10,15], x = 1
Output: 1
Explanation: We can select nums[1] = 3 and nums[2] = 2.
They are at least 1 index apart, and their absolute difference is the minimum, 1.
It can be shown that 1 is the optimal answer.
Example 3:
Input: nums = [1,2,3,4], x = 3
Output: 3
Explanation: We can select nums[0] = 1 and nums[3] = 4.
They are at least 3 indices apart, and their absolute difference is the minimum, 3.
It can be shown that 3 is the optimal answer.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
0 <= x < nums.length
Solutions
Solution 1: Ordered Set
We create an ordered set to store the elements whose distance to the current index is at least \(x\).
Next, we enumerate from index \(i = x\), each time we add \(nums[i - x]\) into the ordered set. Then we find the two elements in the ordered set which are closest to \(nums[i]\), and the minimum absolute difference between them is the answer.
The time complexity is \(O(n \times \log n)\), and the space complexity is \(O(n)\). Where \(n\) is the length of array \(nums\).
functionminAbsoluteDifference(nums:number[],x:number):number{consts=newTreeMultiSet<number>();constinf=1<<30;letans=inf;for(leti=x;i<nums.length;++i){s.add(nums[i-x]);constc=s.ceil(nums[i]);constf=s.floor(nums[i]);if(c){ans=Math.min(ans,c-nums[i]);}if(f){ans=Math.min(ans,nums[i]-f);}}returnans;}typeCompare<T>=(lhs:T,rhs:T)=>number;classRBTreeNode<T=number>{data:T;count:number;left:RBTreeNode<T>|null;right:RBTreeNode<T>|null;parent:RBTreeNode<T>|null;color:number;constructor(data:T){this.data=data;this.left=this.right=this.parent=null;this.color=0;this.count=1;}sibling():RBTreeNode<T>|null{if(!this.parent)returnnull;// sibling null if no parentreturnthis.isOnLeft()?this.parent.right:this.parent.left;}isOnLeft():boolean{returnthis===this.parent!.left;}hasRedChild():boolean{return(Boolean(this.left&&this.left.color===0)||Boolean(this.right&&this.right.color===0));}}classRBTree<T>{root:RBTreeNode<T>|null;lt:(l:T,r:T)=>boolean;constructor(compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0)){this.root=null;this.lt=(l:T,r:T)=>compare(l,r)<0;}rotateLeft(pt:RBTreeNode<T>):void{constright=pt.right!;pt.right=right.left;if(pt.right)pt.right.parent=pt;right.parent=pt.parent;if(!pt.parent)this.root=right;elseif(pt===pt.parent.left)pt.parent.left=right;elsept.parent.right=right;right.left=pt;pt.parent=right;}rotateRight(pt:RBTreeNode<T>):void{constleft=pt.left!;pt.left=left.right;if(pt.left)pt.left.parent=pt;left.parent=pt.parent;if(!pt.parent)this.root=left;elseif(pt===pt.parent.left)pt.parent.left=left;elsept.parent.right=left;left.right=pt;pt.parent=left;}swapColor(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.color;p1.color=p2.color;p2.color=tmp;}swapData(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.data;p1.data=p2.data;p2.data=tmp;}fixAfterInsert(pt:RBTreeNode<T>):void{letparent=null;letgrandParent=null;while(pt!==this.root&&pt.color!==1&&pt.parent?.color===0){parent=pt.parent;grandParent=pt.parent.parent;/* Case : A Parent of pt is left child of Grand-parent of pt */if(parent===grandParent?.left){constuncle=grandParent.right;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle&&uncle.color===0){grandParent.color=0;parent.color=1;uncle.color=1;pt=grandParent;}else{/* Case : 2 pt is right child of its parent Left-rotation required */if(pt===parent.right){this.rotateLeft(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is left child of its parent Right-rotation required */this.rotateRight(grandParent);this.swapColor(parent!,grandParent);pt=parent!;}}else{/* Case : B Parent of pt is right child of Grand-parent of pt */constuncle=grandParent!.left;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle!=null&&uncle.color===0){grandParent!.color=0;parent.color=1;uncle.color=1;pt=grandParent!;}else{/* Case : 2 pt is left child of its parent Right-rotation required */if(pt===parent.left){this.rotateRight(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is right child of its parent Left-rotation required */this.rotateLeft(grandParent!);this.swapColor(parent!,grandParent!);pt=parent!;}}}this.root!.color=1;}delete(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;node.count--;if(!node.count)this.deleteNode(node);returntrue;}deleteAll(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;this.deleteNode(node);returntrue;}deleteNode(v:RBTreeNode<T>):void{constu=BSTreplace(v);// True when u and v are both blackconstuvBlack=(u===null||u.color===1)&&v.color===1;constparent=v.parent!;if(!u){// u is null therefore v is leafif(v===this.root)this.root=null;// v is root, making root nullelse{if(uvBlack){// u and v both black// v is leaf, fix double black at vthis.fixDoubleBlack(v);}else{// u or v is redif(v.sibling()){// sibling is not null, make it red"v.sibling()!.color=0;}}// delete v from the treeif(v.isOnLeft())parent.left=null;elseparent.right=null;}return;}if(!v.left||!v.right){// v has 1 childif(v===this.root){// v is root, assign the value of u to v, and delete uv.data=u.data;v.left=v.right=null;}else{// Detach v from tree and move u upif(v.isOnLeft())parent.left=u;elseparent.right=u;u.parent=parent;if(uvBlack)this.fixDoubleBlack(u);// u and v both black, fix double black at uelseu.color=1;// u or v red, color u black}return;}// v has 2 children, swap data with successor and recursethis.swapData(u,v);this.deleteNode(u);// find node that replaces a deleted node in BSTfunctionBSTreplace(x:RBTreeNode<T>):RBTreeNode<T>|null{// when node have 2 childrenif(x.left&&x.right)returnsuccessor(x.right);// when leafif(!x.left&&!x.right)returnnull;// when single childreturnx.left??x.right;}// find node that do not have a left child// in the subtree of the given nodefunctionsuccessor(x:RBTreeNode<T>):RBTreeNode<T>{lettemp=x;while(temp.left)temp=temp.left;returntemp;}}fixDoubleBlack(x:RBTreeNode<T>):void{if(x===this.root)return;// Reached rootconstsibling=x.sibling();constparent=x.parent!;if(!sibling){// No sibiling, double black pushed upthis.fixDoubleBlack(parent);}else{if(sibling.color===0){// Sibling redparent.color=0;sibling.color=1;if(sibling.isOnLeft())this.rotateRight(parent);// left caseelsethis.rotateLeft(parent);// right casethis.fixDoubleBlack(x);}else{// Sibling blackif(sibling.hasRedChild()){// at least 1 red childrenif(sibling.left&&sibling.left.color===0){if(sibling.isOnLeft()){// left leftsibling.left.color=sibling.color;sibling.color=parent.color;this.rotateRight(parent);}else{// right leftsibling.left.color=parent.color;this.rotateRight(sibling);this.rotateLeft(parent);}}else{if(sibling.isOnLeft()){// left rightsibling.right!.color=parent.color;this.rotateLeft(sibling);this.rotateRight(parent);}else{// right rightsibling.right!.color=sibling.color;sibling.color=parent.color;this.rotateLeft(parent);}}parent.color=1;}else{// 2 black childrensibling.color=0;if(parent.color===1)this.fixDoubleBlack(parent);elseparent.color=1;}}}}insert(data:T):boolean{// search for a position to insertletparent=this.root;while(parent){if(this.lt(data,parent.data)){if(!parent.left)break;elseparent=parent.left;}elseif(this.lt(parent.data,data)){if(!parent.right)break;elseparent=parent.right;}elsebreak;}// insert node into parentconstnode=newRBTreeNode(data);if(!parent)this.root=node;elseif(this.lt(node.data,parent.data))parent.left=node;elseif(this.lt(parent.data,node.data))parent.right=node;else{parent.count++;returnfalse;}node.parent=parent;this.fixAfterInsert(node);returntrue;}find(data:T):RBTreeNode<T>|null{letp=this.root;while(p){if(this.lt(data,p.data)){p=p.left;}elseif(this.lt(p.data,data)){p=p.right;}elsebreak;}returnp??null;}*inOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.inOrder(root.left!))yieldv;yieldroot.data;for(constvofthis.inOrder(root.right!))yieldv;}*reverseInOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.reverseInOrder(root.right!))yieldv;yieldroot.data;for(constvofthis.reverseInOrder(root.left!))yieldv;}}classTreeMultiSet<T=number>{_size:number;tree:RBTree<T>;compare:Compare<T>;constructor(collection:T[]|Compare<T>=[],compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0),){if(typeofcollection==='function'){compare=collection;collection=[];}this._size=0;this.compare=compare;this.tree=newRBTree(compare);for(constvalofcollection)this.add(val);}size():number{returnthis._size;}has(val:T):boolean{return!!this.tree.find(val);}add(val:T):boolean{constsuccessful=this.tree.insert(val);this._size++;returnsuccessful;}delete(val:T):boolean{constsuccessful=this.tree.delete(val);if(!successful)returnfalse;this._size--;returntrue;}count(val:T):number{constnode=this.tree.find(val);returnnode?node.count:0;}ceil(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(p.data,val)>=0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}floor(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(val,p.data)>=0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}higher(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(val,p.data)<0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}lower(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(p.data,val)<0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}first():T|undefined{returnthis.tree.inOrder().next().value;}last():T|undefined{returnthis.tree.reverseInOrder().next().value;}shift():T|undefined{constfirst=this.first();if(first===undefined)returnundefined;this.delete(first);returnfirst;}pop():T|undefined{constlast=this.last();if(last===undefined)returnundefined;this.delete(last);returnlast;}*[Symbol.iterator]():Generator<T,void,void>{yield*this.values();}*keys():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*values():Generator<T,undefined,void>{for(constvalofthis.tree.inOrder()){letcount=this.count(val);while(count--)yieldval;}returnundefined;}/** * Return a generator for reverse order traversing the multi-set */*rvalues():Generator<T,undefined,void>{for(constvalofthis.tree.reverseInOrder()){letcount=this.count(val);while(count--)yieldval;}returnundefined;}}