Skip to content

2770. Maximum Number of Jumps to Reach the Last Index

Description

You are given a 0-indexed array nums of n integers and an integer target.

You are initially positioned at index 0. In one step, you can jump from index i to any index j such that:

  • 0 <= i < j < n
  • -target <= nums[j] - nums[i] <= target

Return the maximum number of jumps you can make to reach index n - 1.

If there is no way to reach index n - 1, return -1.

 

Example 1:

Input: nums = [1,3,6,4,1,2], target = 2
Output: 3
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the following jumping sequence:
- Jump from index 0 to index 1. 
- Jump from index 1 to index 3.
- Jump from index 3 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 3 jumps. Hence, the answer is 3. 

Example 2:

Input: nums = [1,3,6,4,1,2], target = 3
Output: 5
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the following jumping sequence:
- Jump from index 0 to index 1.
- Jump from index 1 to index 2.
- Jump from index 2 to index 3.
- Jump from index 3 to index 4.
- Jump from index 4 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 5 jumps. Hence, the answer is 5. 

Example 3:

Input: nums = [1,3,6,4,1,2], target = 0
Output: -1
Explanation: It can be proven that there is no jumping sequence that goes from 0 to n - 1. Hence, the answer is -1. 

 

Constraints:

  • 2 <= nums.length == n <= 1000
  • -109 <= nums[i] <= 109
  • 0 <= target <= 2 * 109

Solutions

Solution 1: Memoization

For each position $i$, we consider to jump to position $j$ which satisfies $|nums[i] - nums[j]| \leq target$. Then we can jump from $i$ to $j$, and continue to jump from $j$ to the end.

Therefore, we design a function $dfs(i)$, which represents the maximum number of jumps needed to jump to the end index starting from position $i$. Then the answer is $dfs(0)$.

The calculation process of function $dfs(i)$ is as follows:

  • If $i = n - 1$, then we have reached the end index and no jumps are required, so return $0$;
  • Otherwise, we need to enumerate the positions $j$ that can be jumped from position $i$, and calculate the maximum number of jumps needed to jump to the end index starting from $j$, then $dfs(i)$ is equal to the maximum value of all $dfs(j)$ plus $1$. If there is no position $j$ that can be jumped from $i$, then $dfs(i) = -\infty$.

To avoid duplicate calculations, we can use memoization.

Time complexity $O(n^2)$, space complexity $O(n)$. where $n$ is the length of array.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def maximumJumps(self, nums: List[int], target: int) -> int:
        @cache
        def dfs(i: int) -> int:
            if i == n - 1:
                return 0
            ans = -inf
            for j in range(i + 1, n):
                if abs(nums[i] - nums[j]) <= target:
                    ans = max(ans, 1 + dfs(j))
            return ans

        n = len(nums)
        ans = dfs(0)
        return -1 if ans < 0 else ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
    private Integer[] f;
    private int[] nums;
    private int n;
    private int target;

    public int maximumJumps(int[] nums, int target) {
        n = nums.length;
        this.target = target;
        this.nums = nums;
        f = new Integer[n];
        int ans = dfs(0);
        return ans < 0 ? -1 : ans;
    }

    private int dfs(int i) {
        if (i == n - 1) {
            return 0;
        }
        if (f[i] != null) {
            return f[i];
        }
        int ans = -(1 << 30);
        for (int j = i + 1; j < n; ++j) {
            if (Math.abs(nums[i] - nums[j]) <= target) {
                ans = Math.max(ans, 1 + dfs(j));
            }
        }
        return f[i] = ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int maximumJumps(vector<int>& nums, int target) {
        int n = nums.size();
        int f[n];
        memset(f, -1, sizeof(f));
        function<int(int)> dfs = [&](int i) {
            if (i == n - 1) {
                return 0;
            }
            if (f[i] != -1) {
                return f[i];
            }
            f[i] = -(1 << 30);
            for (int j = i + 1; j < n; ++j) {
                if (abs(nums[i] - nums[j]) <= target) {
                    f[i] = max(f[i], 1 + dfs(j));
                }
            }
            return f[i];
        };
        int ans = dfs(0);
        return ans < 0 ? -1 : ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
func maximumJumps(nums []int, target int) int {
    n := len(nums)
    f := make([]int, n)
    for i := range f {
        f[i] = -1
    }
    var dfs func(int) int
    dfs = func(i int) int {
        if i == n-1 {
            return 0
        }
        if f[i] != -1 {
            return f[i]
        }
        f[i] = -(1 << 30)
        for j := i + 1; j < n; j++ {
            if abs(nums[i]-nums[j]) <= target {
                f[i] = max(f[i], 1+dfs(j))
            }
        }
        return f[i]
    }
    ans := dfs(0)
    if ans < 0 {
        return -1
    }
    return ans
}

func abs(x int) int {
    if x < 0 {
        return -x
    }
    return x
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
function maximumJumps(nums: number[], target: number): number {
    const n = nums.length;
    const f: number[] = Array(n).fill(-1);
    const dfs = (i: number): number => {
        if (i === n - 1) {
            return 0;
        }
        if (f[i] !== -1) {
            return f[i];
        }
        f[i] = -(1 << 30);
        for (let j = i + 1; j < n; ++j) {
            if (Math.abs(nums[i] - nums[j]) <= target) {
                f[i] = Math.max(f[i], 1 + dfs(j));
            }
        }
        return f[i];
    };
    const ans = dfs(0);
    return ans < 0 ? -1 : ans;
}

Comments