You are given a 0-indexed array of strings words and a 2D array of integers queries.
Each query queries[i] = [li, ri] asks us to find the number of strings present in the range li to ri (both inclusive) of words that start and end with a vowel.
Return an array ans of size queries.length, where ans[i] is the answer to the ith query.
Note that the vowel letters are 'a', 'e', 'i', 'o', and 'u'.
Example 1:
Input: words = ["aba","bcb","ece","aa","e"], queries = [[0,2],[1,4],[1,1]]
Output: [2,3,0]
Explanation: The strings starting and ending with a vowel are "aba", "ece", "aa" and "e".
The answer to the query [0,2] is 2 (strings "aba" and "ece").
to query [1,4] is 3 (strings "ece", "aa", "e").
to query [1,1] is 0.
We return [2,3,0].
Example 2:
Input: words = ["a","e","i"], queries = [[0,2],[0,1],[2,2]]
Output: [3,2,1]
Explanation: Every string satisfies the conditions, so we return [3,2,1].
Constraints:
1 <= words.length <= 105
1 <= words[i].length <= 40
words[i] consists only of lowercase English letters.
sum(words[i].length) <= 3 * 105
1 <= queries.length <= 105
0 <= li <= ri < words.length
Solutions
Solution 1: Preprocessing + Binary Search
We can preprocess all the indices of the strings that start and end with a vowel, and record them in order in the array $nums$.
Next, we iterate through each query $(l, r)$, and use binary search to find the first index $i$ in $nums$ that is greater than or equal to $l$, and the first index $j$ that is greater than $r$. Therefore, the answer to the current query is $j - i$.
The time complexity is $O(n + m \times \log n)$, and the space complexity is $O(n)$. Where $n$ and $m$ are the lengths of the arrays $words$ and $queries$, respectively.
We can create a prefix sum array $s$ of length $n+1$, where $s[i]$ represents the number of strings that start and end with a vowel in the first $i$ strings of the array $words$. Initially, $s[0] = 0$.
Next, we iterate through the array $words$. If the current string starts and ends with a vowel, then $s[i+1] = s[i] + 1$, otherwise $s[i+1] = s[i]$.
Finally, we iterate through each query $(l, r)$. Therefore, the answer to the current query is $s[r+1] - s[l]$.
The time complexity is $O(n + m)$, and the space complexity is $O(n)$. Where $n$ and $m$ are the lengths of the arrays $words$ and $queries$, respectively.