Skip to content

2533. Number of Good Binary Strings πŸ”’

Description

You are given four integers minLength, maxLength, oneGroup and zeroGroup.

A binary string is good if it satisfies the following conditions:

  • The length of the string is in the range [minLength, maxLength].
  • The size of each block of consecutive 1's is a multiple of oneGroup.
    • For example in a binary string 00110111100 sizes of each block of consecutive ones are [2,4].
  • The size of each block of consecutive 0's is a multiple of zeroGroup.
    • For example, in a binary string 00110111100 sizes of each block of consecutive zeros are [2,1,2].

Return the number of good binary strings. Since the answer may be too large, return it modulo 109 + 7.

Note that 0 is considered a multiple of all the numbers.

 

Example 1:

Input: minLength = 2, maxLength = 3, oneGroup = 1, zeroGroup = 2
Output: 5
Explanation: There are 5 good binary strings in this example: "00", "11", "001", "100", and "111".
It can be proven that there are only 5 good strings satisfying all conditions.

Example 2:

Input: minLength = 4, maxLength = 4, oneGroup = 4, zeroGroup = 3
Output: 1
Explanation: There is only 1 good binary string in this example: "1111".
It can be proven that there is only 1 good string satisfying all conditions.

 

Constraints:

  • 1 <= minLength <= maxLength <= 105
  • 1 <= oneGroup, zeroGroup <= maxLength

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ as the number of strings of length $i$ that meet the condition. The state transition equation is:

$$ f[i] = \begin{cases} 1 & i = 0 \ f[i - oneGroup] + f[i - zeroGroup] & i \geq 1 \end{cases} $$

The final answer is $f[minLength] + f[minLength + 1] + \cdots + f[maxLength]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n=maxLength$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution:
    def goodBinaryStrings(
        self, minLength: int, maxLength: int, oneGroup: int, zeroGroup: int
    ) -> int:
        mod = 10**9 + 7
        f = [1] + [0] * maxLength
        for i in range(1, len(f)):
            if i - oneGroup >= 0:
                f[i] += f[i - oneGroup]
            if i - zeroGroup >= 0:
                f[i] += f[i - zeroGroup]
            f[i] %= mod
        return sum(f[minLength:]) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
        final int mod = (int) 1e9 + 7;
        int[] f = new int[maxLength + 1];
        f[0] = 1;
        for (int i = 1; i <= maxLength; ++i) {
            if (i - oneGroup >= 0) {
                f[i] = (f[i] + f[i - oneGroup]) % mod;
            }
            if (i - zeroGroup >= 0) {
                f[i] = (f[i] + f[i - zeroGroup]) % mod;
            }
        }
        int ans = 0;
        for (int i = minLength; i <= maxLength; ++i) {
            ans = (ans + f[i]) % mod;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
        const int mod = 1e9 + 7;
        int f[maxLength + 1];
        memset(f, 0, sizeof f);
        f[0] = 1;
        for (int i = 1; i <= maxLength; ++i) {
            if (i - oneGroup >= 0) {
                f[i] = (f[i] + f[i - oneGroup]) % mod;
            }
            if (i - zeroGroup >= 0) {
                f[i] = (f[i] + f[i - zeroGroup]) % mod;
            }
        }
        int ans = 0;
        for (int i = minLength; i <= maxLength; ++i) {
            ans = (ans + f[i]) % mod;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
func goodBinaryStrings(minLength int, maxLength int, oneGroup int, zeroGroup int) (ans int) {
    const mod int = 1e9 + 7
    f := make([]int, maxLength+1)
    f[0] = 1
    for i := 1; i <= maxLength; i++ {
        if i-oneGroup >= 0 {
            f[i] += f[i-oneGroup]
        }
        if i-zeroGroup >= 0 {
            f[i] += f[i-zeroGroup]
        }
        f[i] %= mod
    }
    for _, v := range f[minLength:] {
        ans = (ans + v) % mod
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
function goodBinaryStrings(
    minLength: number,
    maxLength: number,
    oneGroup: number,
    zeroGroup: number,
): number {
    const mod = 10 ** 9 + 7;
    const f: number[] = Array(maxLength + 1).fill(0);
    f[0] = 1;
    for (let i = 1; i <= maxLength; ++i) {
        if (i >= oneGroup) {
            f[i] += f[i - oneGroup];
        }
        if (i >= zeroGroup) {
            f[i] += f[i - zeroGroup];
        }
        f[i] %= mod;
    }
    return f.slice(minLength).reduce((a, b) => a + b, 0) % mod;
}

Comments