2429. Minimize XOR
Description
Given two positive integers num1
and num2
, find the positive integer x
such that:
x
has the same number of set bits asnum2
, and- The value
x XOR num1
is minimal.
Note that XOR
is the bitwise XOR operation.
Return the integer x
. The test cases are generated such that x
is uniquely determined.
The number of set bits of an integer is the number of 1
's in its binary representation.
Example 1:
Input: num1 = 3, num2 = 5 Output: 3 Explanation: The binary representations of num1 and num2 are 0011 and 0101, respectively. The integer 3 has the same number of set bits as num2, and the value 3 XOR 3 = 0 is minimal.
Example 2:
Input: num1 = 1, num2 = 12 Output: 3 Explanation: The binary representations of num1 and num2 are 0001 and 1100, respectively. The integer 3 has the same number of set bits as num2, and the value 3 XOR 1 = 2 is minimal.
Constraints:
1 <= num1, num2 <= 109
Solutions
Solution 1: Greedy + Bit Manipulation
According to the problem description, we first calculate the number of set bits \(cnt\) in \(num2\), then enumerate each bit of \(num1\) from high to low. If the bit is \(1\), we set the corresponding bit in \(x\) to \(1\) and decrement \(cnt\) by \(1\), until \(cnt\) is \(0\). If \(cnt\) is still not \(0\) at this point, we start from the low bit and set each bit of \(num1\) that is \(0\) to \(1\), and decrement \(cnt\) by \(1\), until \(cnt\) is \(0\).
The time complexity is \(O(\log n)\), and the space complexity is \(O(1)\). Here, \(n\) is the maximum value of \(num1\) and \(num2\).
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
Solution 2
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|