Skip to content

2398. Maximum Number of Robots Within Budget

Description

You have n robots. You are given two 0-indexed integer arrays, chargeTimes and runningCosts, both of length n. The ith robot costs chargeTimes[i] units to charge and costs runningCosts[i] units to run. You are also given an integer budget.

The total cost of running k chosen robots is equal to max(chargeTimes) + k * sum(runningCosts), where max(chargeTimes) is the largest charge cost among the k robots and sum(runningCosts) is the sum of running costs among the k robots.

Return the maximum number of consecutive robots you can run such that the total cost does not exceed budget.

 

Example 1:

Input: chargeTimes = [3,6,1,3,4], runningCosts = [2,1,3,4,5], budget = 25
Output: 3
Explanation: 
It is possible to run all individual and consecutive pairs of robots within budget.
To obtain answer 3, consider the first 3 robots. The total cost will be max(3,6,1) + 3 * sum(2,1,3) = 6 + 3 * 6 = 24 which is less than 25.
It can be shown that it is not possible to run more than 3 consecutive robots within budget, so we return 3.

Example 2:

Input: chargeTimes = [11,12,19], runningCosts = [10,8,7], budget = 19
Output: 0
Explanation: No robot can be run that does not exceed the budget, so we return 0.

 

Constraints:

  • chargeTimes.length == runningCosts.length == n
  • 1 <= n <= 5 * 104
  • 1 <= chargeTimes[i], runningCosts[i] <= 105
  • 1 <= budget <= 1015

Solutions

Solution 1: Two Pointers + Monotonic Queue

The problem is essentially finding the maximum value within a sliding window, which can be solved using a monotonic queue.

We only need to use binary search to enumerate the size of the window $k$, and find the largest $k$ that satisfies the problem requirements.

In the implementation process, we don't actually need to perform binary search enumeration. We just need to change the fixed window to a non-fixed window with double pointers.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the number of robots in the problem.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def maximumRobots(
        self, chargeTimes: List[int], runningCosts: List[int], budget: int
    ) -> int:
        q = deque()
        ans = s = l = 0
        for r, (t, c) in enumerate(zip(chargeTimes, runningCosts)):
            s += c
            while q and chargeTimes[q[-1]] <= t:
                q.pop()
            q.append(r)
            while q and (r - l + 1) * s + chargeTimes[q[0]] > budget:
                if q[0] == l:
                    q.popleft()
                s -= runningCosts[l]
                l += 1
            ans = max(ans, r - l + 1)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
    public int maximumRobots(int[] chargeTimes, int[] runningCosts, long budget) {
        Deque<Integer> q = new ArrayDeque<>();
        int n = chargeTimes.length;
        int ans = 0;
        long s = 0;
        for (int l = 0, r = 0; r < n; ++r) {
            s += runningCosts[r];
            while (!q.isEmpty() && chargeTimes[q.peekLast()] <= chargeTimes[r]) {
                q.pollLast();
            }
            q.offerLast(r);
            while (!q.isEmpty() && (r - l + 1) * s + chargeTimes[q.peekFirst()] > budget) {
                if (q.peekFirst() == l) {
                    q.pollFirst();
                }
                s -= runningCosts[l++];
            }
            ans = Math.max(ans, r - l + 1);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int maximumRobots(vector<int>& chargeTimes, vector<int>& runningCosts, long long budget) {
        deque<int> q;
        long long s = 0;
        int ans = 0;
        int n = chargeTimes.size();
        for (int l = 0, r = 0; r < n; ++r) {
            s += runningCosts[r];
            while (q.size() && chargeTimes[q.back()] <= chargeTimes[r]) {
                q.pop_back();
            }
            q.push_back(r);
            while (q.size() && (r - l + 1) * s + chargeTimes[q.front()] > budget) {
                if (q.front() == l) {
                    q.pop_front();
                }
                s -= runningCosts[l++];
            }
            ans = max(ans, r - l + 1);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
func maximumRobots(chargeTimes []int, runningCosts []int, budget int64) (ans int) {
    q := Deque{}
    s := int64(0)
    l := 0
    for r, t := range chargeTimes {
        s += int64(runningCosts[r])
        for !q.Empty() && chargeTimes[q.Back()] <= t {
            q.PopBack()
        }
        q.PushBack(r)
        for !q.Empty() && int64(r-l+1)*s+int64(chargeTimes[q.Front()]) > budget {
            if q.Front() == l {
                q.PopFront()
            }
            s -= int64(runningCosts[l])
            l++
        }
        ans = max(ans, r-l+1)
    }
    return
}

// template
type Deque struct{ l, r []int }

func (q Deque) Empty() bool {
    return len(q.l) == 0 && len(q.r) == 0
}

func (q Deque) Size() int {
    return len(q.l) + len(q.r)
}

func (q *Deque) PushFront(v int) {
    q.l = append(q.l, v)
}

func (q *Deque) PushBack(v int) {
    q.r = append(q.r, v)
}

func (q *Deque) PopFront() (v int) {
    if len(q.l) > 0 {
        q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
    } else {
        v, q.r = q.r[0], q.r[1:]
    }
    return
}

func (q *Deque) PopBack() (v int) {
    if len(q.r) > 0 {
        q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
    } else {
        v, q.l = q.l[0], q.l[1:]
    }
    return
}

func (q Deque) Front() int {
    if len(q.l) > 0 {
        return q.l[len(q.l)-1]
    }
    return q.r[0]
}

func (q Deque) Back() int {
    if len(q.r) > 0 {
        return q.r[len(q.r)-1]
    }
    return q.l[0]
}

func (q Deque) Get(i int) int {
    if i < len(q.l) {
        return q.l[len(q.l)-1-i]
    }
    return q.r[i-len(q.l)]
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
function maximumRobots(chargeTimes: number[], runningCosts: number[], budget: number): number {
    const q = new Deque<number>();
    const n = chargeTimes.length;
    let [ans, s] = [0, 0];
    for (let l = 0, r = 0; r < n; ++r) {
        s += runningCosts[r];
        while (!q.isEmpty() && chargeTimes[q.backValue()!] <= chargeTimes[r]) {
            q.popBack();
        }
        q.pushBack(r);
        while (!q.isEmpty() && (r - l + 1) * s + chargeTimes[q.frontValue()!] > budget) {
            if (q.frontValue() === l) {
                q.popFront();
            }
            s -= runningCosts[l++];
        }
        ans = Math.max(ans, r - l + 1);
    }
    return ans;
}

class Node<T> {
    value: T;
    next: Node<T> | null;
    prev: Node<T> | null;

    constructor(value: T) {
        this.value = value;
        this.next = null;
        this.prev = null;
    }
}

class Deque<T> {
    private front: Node<T> | null;
    private back: Node<T> | null;
    private size: number;

    constructor() {
        this.front = null;
        this.back = null;
        this.size = 0;
    }

    pushFront(val: T): void {
        const newNode = new Node(val);
        if (this.isEmpty()) {
            this.front = newNode;
            this.back = newNode;
        } else {
            newNode.next = this.front;
            this.front!.prev = newNode;
            this.front = newNode;
        }
        this.size++;
    }

    pushBack(val: T): void {
        const newNode = new Node(val);
        if (this.isEmpty()) {
            this.front = newNode;
            this.back = newNode;
        } else {
            newNode.prev = this.back;
            this.back!.next = newNode;
            this.back = newNode;
        }
        this.size++;
    }

    popFront(): T | undefined {
        if (this.isEmpty()) {
            return undefined;
        }
        const value = this.front!.value;
        this.front = this.front!.next;
        if (this.front !== null) {
            this.front.prev = null;
        } else {
            this.back = null;
        }
        this.size--;
        return value;
    }

    popBack(): T | undefined {
        if (this.isEmpty()) {
            return undefined;
        }
        const value = this.back!.value;
        this.back = this.back!.prev;
        if (this.back !== null) {
            this.back.next = null;
        } else {
            this.front = null;
        }
        this.size--;
        return value;
    }

    frontValue(): T | undefined {
        return this.front?.value;
    }

    backValue(): T | undefined {
        return this.back?.value;
    }

    getSize(): number {
        return this.size;
    }

    isEmpty(): boolean {
        return this.size === 0;
    }
}

Comments