Skip to content

2393. Count Strictly Increasing Subarrays πŸ”’

Description

You are given an array nums consisting of positive integers.

Return the number of subarrays of nums that are in strictly increasing order.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,3,5,4,4,6]
Output: 10
Explanation: The strictly increasing subarrays are the following:
- Subarrays of length 1: [1], [3], [5], [4], [4], [6].
- Subarrays of length 2: [1,3], [3,5], [4,6].
- Subarrays of length 3: [1,3,5].
The total number of subarrays is 6 + 3 + 1 = 10.

Example 2:

Input: nums = [1,2,3,4,5]
Output: 15
Explanation: Every subarray is strictly increasing. There are 15 possible subarrays that we can take.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 106

Solutions

Solution 1: Enumeration

We can enumerate the number of strictly increasing subarrays ending at each element and then sum them up.

We use a variable $\textit{cnt}$ to record the number of strictly increasing subarrays ending at the current element, initially $\textit{cnt} = 1$. Then we traverse the array starting from the second element. If the current element is greater than the previous element, then $\textit{cnt}$ can be incremented by $1$. Otherwise, $\textit{cnt}$ is reset to $1$. At this point, the number of strictly increasing subarrays ending at the current element is $\textit{cnt}$, and we add it to the answer.

After the traversal, return the answer.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution:
    def countSubarrays(self, nums: List[int]) -> int:
        ans = cnt = 1
        for x, y in pairwise(nums):
            if x < y:
                cnt += 1
            else:
                cnt = 1
            ans += cnt
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
    public long countSubarrays(int[] nums) {
        long ans = 1, cnt = 1;
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i - 1] < nums[i]) {
                ++cnt;
            } else {
                cnt = 1;
            }
            ans += cnt;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    long long countSubarrays(vector<int>& nums) {
        long long ans = 1, cnt = 1;
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i - 1] < nums[i]) {
                ++cnt;
            } else {
                cnt = 1;
            }
            ans += cnt;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
func countSubarrays(nums []int) int64 {
    ans, cnt := 1, 1
    for i, x := range nums[1:] {
        if nums[i] < x {
            cnt++
        } else {
            cnt = 1
        }
        ans += cnt
    }
    return int64(ans)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function countSubarrays(nums: number[]): number {
    let [ans, cnt] = [1, 1];
    for (let i = 1; i < nums.length; ++i) {
        if (nums[i - 1] < nums[i]) {
            ++cnt;
        } else {
            cnt = 1;
        }
        ans += cnt;
    }
    return ans;
}

Comments