You have a set which contains all positive integers [1, 2, 3, 4, 5, ...].
Implement the SmallestInfiniteSet class:
SmallestInfiniteSet() Initializes the SmallestInfiniteSet object to contain all positive integers.
int popSmallest()Removes and returns the smallest integer contained in the infinite set.
void addBack(int num)Adds a positive integer num back into the infinite set, if it is not already in the infinite set.
Example 1:
Input
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
Output
[null, null, 1, 2, 3, null, 1, 4, 5]
Explanation
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2); // 2 is already in the set, so no change is made.
smallestInfiniteSet.popSmallest(); // return 1, since 1 is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 2, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 3, and remove it from the set.
smallestInfiniteSet.addBack(1); // 1 is added back to the set.
smallestInfiniteSet.popSmallest(); // return 1, since 1 was added back to the set and
// is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 4, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 5, and remove it from the set.
Constraints:
1 <= num <= 1000
At most 1000 calls will be made in total to popSmallest and addBack.
Solutions
Solution 1: Ordered Set + Simulation
We note that the range of elements in the set given by the problem is \([1, 1000]\), and the operations we need to support are:
popSmallest: Pop the smallest element from the set
addBack: Add an element back to the set
Therefore, we can use an ordered set to simulate this. Let's denote the ordered set as \(s\), and the elements in the set as \(s_1, s_2, \cdots, s_n\), where \(n\) is the number of elements in the ordered set. In this problem, \(n \le 1000\).
During initialization, we add all elements in \([1, 1000]\) to the ordered set. The time complexity is \(O(n \times \log n)\).
In the popSmallest operation, we just need to pop the first element from the ordered set. The time complexity for a single operation is \(O(\log n)\).
In the addBack operation, we just need to add the element back to the ordered set. The time complexity for a single operation is \(O(\log n)\).
The space complexity is \(O(n)\).
1 2 3 4 5 6 7 8 91011121314151617
classSmallestInfiniteSet:def__init__(self):self.s=SortedSet(range(1,1001))defpopSmallest(self)->int:x=self.s[0]self.s.remove(x)returnxdefaddBack(self,num:int)->None:self.s.add(num)# Your SmallestInfiniteSet object will be instantiated and called as such:# obj = SmallestInfiniteSet()# param_1 = obj.popSmallest()# obj.addBack(num)
1 2 3 4 5 6 7 8 9101112131415161718192021222324
classSmallestInfiniteSet{privateTreeSet<Integer>s=newTreeSet<>();publicSmallestInfiniteSet(){for(inti=1;i<=1000;++i){s.add(i);}}publicintpopSmallest(){returns.pollFirst();}publicvoidaddBack(intnum){s.add(num);}}/** * Your SmallestInfiniteSet object will be instantiated and called as such: * SmallestInfiniteSet obj = new SmallestInfiniteSet(); * int param_1 = obj.popSmallest(); * obj.addBack(num); */
classSmallestInfiniteSet{public:SmallestInfiniteSet(){for(inti=1;i<=1000;++i){s.insert(i);}}intpopSmallest(){intx=*s.begin();s.erase(s.begin());returnx;}voidaddBack(intnum){s.insert(num);}private:set<int>s;};/** * Your SmallestInfiniteSet object will be instantiated and called as such: * SmallestInfiniteSet* obj = new SmallestInfiniteSet(); * int param_1 = obj->popSmallest(); * obj->addBack(num); */
typeSmallestInfiniteSetstruct{s*treemap.Map}funcConstructor()SmallestInfiniteSet{s:=treemap.NewWithIntComparator()fori:=1;i<=1000;i++{s.Put(i,nil)}returnSmallestInfiniteSet{s}}func(this*SmallestInfiniteSet)PopSmallest()int{x,_:=this.s.Min()this.s.Remove(x.(int))returnx.(int)}func(this*SmallestInfiniteSet)AddBack(numint){this.s.Put(num,nil)}/** * Your SmallestInfiniteSet object will be instantiated and called as such: * obj := Constructor(); * param_1 := obj.PopSmallest(); * obj.AddBack(num); */
classSmallestInfiniteSet{privates:TreeSet<number>;constructor(){this.s=newTreeSet();for(leti=1;i<=1000;++i){this.s.add(i);}}popSmallest():number{returnthis.s.shift()!;}addBack(num:number):void{this.s.add(num);}}typeCompare<T>=(lhs:T,rhs:T)=>number;classRBTreeNode<T=number>{data:T;count:number;left:RBTreeNode<T>|null;right:RBTreeNode<T>|null;parent:RBTreeNode<T>|null;color:number;constructor(data:T){this.data=data;this.left=this.right=this.parent=null;this.color=0;this.count=1;}sibling():RBTreeNode<T>|null{if(!this.parent)returnnull;// sibling null if no parentreturnthis.isOnLeft()?this.parent.right:this.parent.left;}isOnLeft():boolean{returnthis===this.parent!.left;}hasRedChild():boolean{return(Boolean(this.left&&this.left.color===0)||Boolean(this.right&&this.right.color===0));}}classRBTree<T>{root:RBTreeNode<T>|null;lt:(l:T,r:T)=>boolean;constructor(compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0)){this.root=null;this.lt=(l:T,r:T)=>compare(l,r)<0;}rotateLeft(pt:RBTreeNode<T>):void{constright=pt.right!;pt.right=right.left;if(pt.right)pt.right.parent=pt;right.parent=pt.parent;if(!pt.parent)this.root=right;elseif(pt===pt.parent.left)pt.parent.left=right;elsept.parent.right=right;right.left=pt;pt.parent=right;}rotateRight(pt:RBTreeNode<T>):void{constleft=pt.left!;pt.left=left.right;if(pt.left)pt.left.parent=pt;left.parent=pt.parent;if(!pt.parent)this.root=left;elseif(pt===pt.parent.left)pt.parent.left=left;elsept.parent.right=left;left.right=pt;pt.parent=left;}swapColor(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.color;p1.color=p2.color;p2.color=tmp;}swapData(p1:RBTreeNode<T>,p2:RBTreeNode<T>):void{consttmp=p1.data;p1.data=p2.data;p2.data=tmp;}fixAfterInsert(pt:RBTreeNode<T>):void{letparent=null;letgrandParent=null;while(pt!==this.root&&pt.color!==1&&pt.parent?.color===0){parent=pt.parent;grandParent=pt.parent.parent;/* Case : A Parent of pt is left child of Grand-parent of pt */if(parent===grandParent?.left){constuncle=grandParent.right;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle&&uncle.color===0){grandParent.color=0;parent.color=1;uncle.color=1;pt=grandParent;}else{/* Case : 2 pt is right child of its parent Left-rotation required */if(pt===parent.right){this.rotateLeft(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is left child of its parent Right-rotation required */this.rotateRight(grandParent);this.swapColor(parent!,grandParent);pt=parent!;}}else{/* Case : B Parent of pt is right child of Grand-parent of pt */constuncle=grandParent!.left;/* Case : 1 The uncle of pt is also red Only Recoloring required */if(uncle!=null&&uncle.color===0){grandParent!.color=0;parent.color=1;uncle.color=1;pt=grandParent!;}else{/* Case : 2 pt is left child of its parent Right-rotation required */if(pt===parent.left){this.rotateRight(parent);pt=parent;parent=pt.parent;}/* Case : 3 pt is right child of its parent Left-rotation required */this.rotateLeft(grandParent!);this.swapColor(parent!,grandParent!);pt=parent!;}}}this.root!.color=1;}delete(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;node.count--;if(!node.count)this.deleteNode(node);returntrue;}deleteAll(val:T):boolean{constnode=this.find(val);if(!node)returnfalse;this.deleteNode(node);returntrue;}deleteNode(v:RBTreeNode<T>):void{constu=BSTreplace(v);// True when u and v are both blackconstuvBlack=(u===null||u.color===1)&&v.color===1;constparent=v.parent!;if(!u){// u is null therefore v is leafif(v===this.root)this.root=null;// v is root, making root nullelse{if(uvBlack){// u and v both black// v is leaf, fix double black at vthis.fixDoubleBlack(v);}else{// u or v is redif(v.sibling()){// sibling is not null, make it red"v.sibling()!.color=0;}}// delete v from the treeif(v.isOnLeft())parent.left=null;elseparent.right=null;}return;}if(!v.left||!v.right){// v has 1 childif(v===this.root){// v is root, assign the value of u to v, and delete uv.data=u.data;v.left=v.right=null;}else{// Detach v from tree and move u upif(v.isOnLeft())parent.left=u;elseparent.right=u;u.parent=parent;if(uvBlack)this.fixDoubleBlack(u);// u and v both black, fix double black at uelseu.color=1;// u or v red, color u black}return;}// v has 2 children, swap data with successor and recursethis.swapData(u,v);this.deleteNode(u);// find node that replaces a deleted node in BSTfunctionBSTreplace(x:RBTreeNode<T>):RBTreeNode<T>|null{// when node have 2 childrenif(x.left&&x.right)returnsuccessor(x.right);// when leafif(!x.left&&!x.right)returnnull;// when single childreturnx.left??x.right;}// find node that do not have a left child// in the subtree of the given nodefunctionsuccessor(x:RBTreeNode<T>):RBTreeNode<T>{lettemp=x;while(temp.left)temp=temp.left;returntemp;}}fixDoubleBlack(x:RBTreeNode<T>):void{if(x===this.root)return;// Reached rootconstsibling=x.sibling();constparent=x.parent!;if(!sibling){// No sibiling, double black pushed upthis.fixDoubleBlack(parent);}else{if(sibling.color===0){// Sibling redparent.color=0;sibling.color=1;if(sibling.isOnLeft())this.rotateRight(parent);// left caseelsethis.rotateLeft(parent);// right casethis.fixDoubleBlack(x);}else{// Sibling blackif(sibling.hasRedChild()){// at least 1 red childrenif(sibling.left&&sibling.left.color===0){if(sibling.isOnLeft()){// left leftsibling.left.color=sibling.color;sibling.color=parent.color;this.rotateRight(parent);}else{// right leftsibling.left.color=parent.color;this.rotateRight(sibling);this.rotateLeft(parent);}}else{if(sibling.isOnLeft()){// left rightsibling.right!.color=parent.color;this.rotateLeft(sibling);this.rotateRight(parent);}else{// right rightsibling.right!.color=sibling.color;sibling.color=parent.color;this.rotateLeft(parent);}}parent.color=1;}else{// 2 black childrensibling.color=0;if(parent.color===1)this.fixDoubleBlack(parent);elseparent.color=1;}}}}insert(data:T):boolean{// search for a position to insertletparent=this.root;while(parent){if(this.lt(data,parent.data)){if(!parent.left)break;elseparent=parent.left;}elseif(this.lt(parent.data,data)){if(!parent.right)break;elseparent=parent.right;}elsebreak;}// insert node into parentconstnode=newRBTreeNode(data);if(!parent)this.root=node;elseif(this.lt(node.data,parent.data))parent.left=node;elseif(this.lt(parent.data,node.data))parent.right=node;else{parent.count++;returnfalse;}node.parent=parent;this.fixAfterInsert(node);returntrue;}find(data:T):RBTreeNode<T>|null{letp=this.root;while(p){if(this.lt(data,p.data)){p=p.left;}elseif(this.lt(p.data,data)){p=p.right;}elsebreak;}returnp??null;}*inOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.inOrder(root.left!))yieldv;yieldroot.data;for(constvofthis.inOrder(root.right!))yieldv;}*reverseInOrder(root:RBTreeNode<T>=this.root!):Generator<T,undefined,void>{if(!root)return;for(constvofthis.reverseInOrder(root.right!))yieldv;yieldroot.data;for(constvofthis.reverseInOrder(root.left!))yieldv;}}classTreeSet<T=number>{_size:number;tree:RBTree<T>;compare:Compare<T>;constructor(collection:T[]|Compare<T>=[],compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0),){if(typeofcollection==='function'){compare=collection;collection=[];}this._size=0;this.compare=compare;this.tree=newRBTree(compare);for(constvalofcollection)this.add(val);}size():number{returnthis._size;}has(val:T):boolean{return!!this.tree.find(val);}add(val:T):boolean{constsuccessful=this.tree.insert(val);this._size+=successful?1:0;returnsuccessful;}delete(val:T):boolean{constdeleted=this.tree.deleteAll(val);this._size-=deleted?1:0;returndeleted;}ceil(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(p.data,val)>=0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}floor(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(val,p.data)>=0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}higher(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(val,p.data)<0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}lower(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(p.data,val)<0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}first():T|undefined{returnthis.tree.inOrder().next().value;}last():T|undefined{returnthis.tree.reverseInOrder().next().value;}shift():T|undefined{constfirst=this.first();if(first===undefined)returnundefined;this.delete(first);returnfirst;}pop():T|undefined{constlast=this.last();if(last===undefined)returnundefined;this.delete(last);returnlast;}*[Symbol.iterator]():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*keys():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*values():Generator<T,undefined,void>{for(constvalofthis.tree.inOrder())yieldval;returnundefined;}/** * Return a generator for reverse order traversing the set */*rvalues():Generator<T,undefined,void>{for(constvalofthis.tree.reverseInOrder())yieldval;returnundefined;}}classTreeMultiSet<T=number>{_size:number;tree:RBTree<T>;compare:Compare<T>;constructor(collection:T[]|Compare<T>=[],compare:Compare<T>=(l:T,r:T)=>(l<r?-1:l>r?1:0),){if(typeofcollection==='function'){compare=collection;collection=[];}this._size=0;this.compare=compare;this.tree=newRBTree(compare);for(constvalofcollection)this.add(val);}size():number{returnthis._size;}has(val:T):boolean{return!!this.tree.find(val);}add(val:T):boolean{constsuccessful=this.tree.insert(val);this._size++;returnsuccessful;}delete(val:T):boolean{constsuccessful=this.tree.delete(val);if(!successful)returnfalse;this._size--;returntrue;}count(val:T):number{constnode=this.tree.find(val);returnnode?node.count:0;}ceil(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(p.data,val)>=0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}floor(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(val,p.data)>=0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}higher(val:T):T|undefined{letp=this.tree.root;lethigher=null;while(p){if(this.compare(val,p.data)<0){higher=p;p=p.left;}else{p=p.right;}}returnhigher?.data;}lower(val:T):T|undefined{letp=this.tree.root;letlower=null;while(p){if(this.compare(p.data,val)<0){lower=p;p=p.right;}else{p=p.left;}}returnlower?.data;}first():T|undefined{returnthis.tree.inOrder().next().value;}last():T|undefined{returnthis.tree.reverseInOrder().next().value;}shift():T|undefined{constfirst=this.first();if(first===undefined)returnundefined;this.delete(first);returnfirst;}pop():T|undefined{constlast=this.last();if(last===undefined)returnundefined;this.delete(last);returnlast;}*[Symbol.iterator]():Generator<T,void,void>{yield*this.values();}*keys():Generator<T,void,void>{for(constvalofthis.values())yieldval;}*values():Generator<T,undefined,void>{for(constvalofthis.tree.inOrder()){letcount=this.count(val);while(count--)yieldval;}returnundefined;}/** * Return a generator for reverse order traversing the multi-set */*rvalues():Generator<T,undefined,void>{for(constvalofthis.tree.reverseInOrder()){letcount=this.count(val);while(count--)yieldval;}returnundefined;}}/** * Your SmallestInfiniteSet object will be instantiated and called as such: * var obj = new SmallestInfiniteSet() * var param_1 = obj.popSmallest() * obj.addBack(num) */
classSmallestInfiniteSet{privatepq:typeofMinPriorityQueue;privates:Set<number>;constructor(){this.pq=newMinPriorityQueue();this.s=newSet();for(leti=1;i<=1000;i++){this.pq.enqueue(i,i);this.s.add(i);}}popSmallest():number{constx=this.pq.dequeue()?.element;this.s.delete(x);returnx;}addBack(num:number):void{if(!this.s.has(num)){this.pq.enqueue(num,num);this.s.add(num);}}}/** * Your SmallestInfiniteSet object will be instantiated and called as such: * var obj = new SmallestInfiniteSet() * var param_1 = obj.popSmallest() * obj.addBack(num) */