2300. Successful Pairs of Spells and Potions
Description
You are given two positive integer arrays spells
and potions
, of length n
and m
respectively, where spells[i]
represents the strength of the ith
spell and potions[j]
represents the strength of the jth
potion.
You are also given an integer success
. A spell and potion pair is considered successful if the product of their strengths is at least success
.
Return an integer array pairs
of length n
where pairs[i]
is the number of potions that will form a successful pair with the ith
spell.
Example 1:
Input: spells = [5,1,3], potions = [1,2,3,4,5], success = 7 Output: [4,0,3] Explanation: - 0th spell: 5 * [1,2,3,4,5] = [5,10,15,20,25]. 4 pairs are successful. - 1st spell: 1 * [1,2,3,4,5] = [1,2,3,4,5]. 0 pairs are successful. - 2nd spell: 3 * [1,2,3,4,5] = [3,6,9,12,15]. 3 pairs are successful. Thus, [4,0,3] is returned.
Example 2:
Input: spells = [3,1,2], potions = [8,5,8], success = 16 Output: [2,0,2] Explanation: - 0th spell: 3 * [8,5,8] = [24,15,24]. 2 pairs are successful. - 1st spell: 1 * [8,5,8] = [8,5,8]. 0 pairs are successful. - 2nd spell: 2 * [8,5,8] = [16,10,16]. 2 pairs are successful. Thus, [2,0,2] is returned.
Constraints:
n == spells.length
m == potions.length
1 <= n, m <= 105
1 <= spells[i], potions[i] <= 105
1 <= success <= 1010
Solutions
Solution 1: Sorting + Binary Search
We can sort the potion array, then traverse the spell array. For each spell \(v\), we use binary search to find the first potion that is greater than or equal to \(\frac{success}{v}\). We mark its index as \(i\). The length of the potion array minus \(i\) is the number of potions that can successfully combine with this spell.
The time complexity is \(O((m + n) \times \log m)\), and the space complexity is \(O(\log n)\). Here, \(m\) and \(n\) are the lengths of the potion array and the spell array, respectively.
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|