Skip to content

2267. Check if There Is a Valid Parentheses String Path

Description

A parentheses string is a non-empty string consisting only of '(' and ')'. It is valid if any of the following conditions is true:

  • It is ().
  • It can be written as AB (A concatenated with B), where A and B are valid parentheses strings.
  • It can be written as (A), where A is a valid parentheses string.

You are given an m x n matrix of parentheses grid. A valid parentheses string path in the grid is a path satisfying all of the following conditions:

  • The path starts from the upper left cell (0, 0).
  • The path ends at the bottom-right cell (m - 1, n - 1).
  • The path only ever moves down or right.
  • The resulting parentheses string formed by the path is valid.

Return true if there exists a valid parentheses string path in the grid. Otherwise, return false.

 

Example 1:

Input: grid = [["(","(","("],[")","(",")"],["(","(",")"],["(","(",")"]]
Output: true
Explanation: The above diagram shows two possible paths that form valid parentheses strings.
The first path shown results in the valid parentheses string "()(())".
The second path shown results in the valid parentheses string "((()))".
Note that there may be other valid parentheses string paths.

Example 2:

Input: grid = [[")",")"],["(","("]]
Output: false
Explanation: The two possible paths form the parentheses strings "))(" and ")((". Since neither of them are valid parentheses strings, we return false.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • grid[i][j] is either '(' or ')'.

Solutions

Solution 1: DFS + Pruning

Let $m$ be the number of rows and $n$ be the number of columns in the matrix.

If $m + n - 1$ is odd, or the parentheses in the top-left and bottom-right corners do not match, then there is no valid path, and we directly return $\text{false}$.

Otherwise, we design a function $\textit{dfs}(i, j, k)$, which represents whether there is a valid path starting from $(i, j)$ with the current balance of parentheses being $k$. The balance $k$ is defined as the number of left parentheses minus the number of right parentheses in the path from $(0, 0)$ to $(i, j)$.

If the balance $k$ is less than $0$ or greater than $m + n - i - j$, then there is no valid path, and we directly return $\text{false}$. If $(i, j)$ is the bottom-right cell, then there is a valid path only if $k = 0$. Otherwise, we enumerate the next cell $(x, y)$ of $(i, j)$. If $(x, y)$ is a valid cell and $\textit{dfs}(x, y, k)$ is $\text{true}$, then there is a valid path.

The time complexity is $O(m \times n \times (m + n))$, and the space complexity is $O(m \times n \times (m + n))$. Here, $m$ and $n$ are the number of rows and columns in the matrix, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution:
    def hasValidPath(self, grid: List[List[str]]) -> bool:
        @cache
        def dfs(i: int, j: int, k: int) -> bool:
            d = 1 if grid[i][j] == "(" else -1
            k += d
            if k < 0 or k > m - i + n - j:
                return False
            if i == m - 1 and j == n - 1:
                return k == 0
            for a, b in pairwise((0, 1, 0)):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and dfs(x, y, k):
                    return True
            return False

        m, n = len(grid), len(grid[0])
        if (m + n - 1) % 2 or grid[0][0] == ")" or grid[m - 1][n - 1] == "(":
            return False
        return dfs(0, 0, 0)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
    private int m, n;
    private char[][] grid;
    private boolean[][][] vis;

    public boolean hasValidPath(char[][] grid) {
        m = grid.length;
        n = grid[0].length;
        if ((m + n - 1) % 2 == 1 || grid[0][0] == ')' || grid[m - 1][n - 1] == '(') {
            return false;
        }
        this.grid = grid;
        vis = new boolean[m][n][m + n];
        return dfs(0, 0, 0);
    }

    private boolean dfs(int i, int j, int k) {
        if (vis[i][j][k]) {
            return false;
        }
        vis[i][j][k] = true;
        k += grid[i][j] == '(' ? 1 : -1;
        if (k < 0 || k > m - i + n - j) {
            return false;
        }
        if (i == m - 1 && j == n - 1) {
            return k == 0;
        }
        final int[] dirs = {1, 0, 1};
        for (int d = 0; d < 2; ++d) {
            int x = i + dirs[d], y = j + dirs[d + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && dfs(x, y, k)) {
                return true;
            }
        }
        return false;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
    bool hasValidPath(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        if ((m + n - 1) % 2 || grid[0][0] == ')' || grid[m - 1][n - 1] == '(') {
            return false;
        }
        bool vis[m][n][m + n];
        memset(vis, false, sizeof(vis));
        int dirs[3] = {1, 0, 1};
        auto dfs = [&](this auto&& dfs, int i, int j, int k) -> bool {
            if (vis[i][j][k]) {
                return false;
            }
            vis[i][j][k] = true;
            k += grid[i][j] == '(' ? 1 : -1;
            if (k < 0 || k > m - i + n - j) {
                return false;
            }
            if (i == m - 1 && j == n - 1) {
                return k == 0;
            }
            for (int d = 0; d < 2; ++d) {
                int x = i + dirs[d], y = j + dirs[d + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && dfs(x, y, k)) {
                    return true;
                }
            }
            return false;
        };
        return dfs(0, 0, 0);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
func hasValidPath(grid [][]byte) bool {
    m, n := len(grid), len(grid[0])
    if (m+n-1)%2 == 1 || grid[0][0] == ')' || grid[m-1][n-1] == '(' {
        return false
    }
    vis := make([][][]bool, m)
    for i := range vis {
        vis[i] = make([][]bool, n)
        for j := range vis[i] {
            vis[i][j] = make([]bool, m+n)
        }
    }
    dirs := [3]int{1, 0, 1}
    var dfs func(i, j, k int) bool
    dfs = func(i, j, k int) bool {
        if vis[i][j][k] {
            return false
        }
        vis[i][j][k] = true
        if grid[i][j] == '(' {
            k++
        } else {
            k--
        }
        if k < 0 || k > m-i+n-j {
            return false
        }
        if i == m-1 && j == n-1 {
            return k == 0
        }
        for d := 0; d < 2; d++ {
            x, y := i+dirs[d], j+dirs[d+1]
            if x >= 0 && x < m && y >= 0 && y < n && dfs(x, y, k) {
                return true
            }
        }
        return false
    }
    return dfs(0, 0, 0)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function hasValidPath(grid: string[][]): boolean {
    const m = grid.length,
        n = grid[0].length;

    if ((m + n - 1) % 2 || grid[0][0] === ')' || grid[m - 1][n - 1] === '(') {
        return false;
    }

    const vis: boolean[][][] = Array.from({ length: m }, () =>
        Array.from({ length: n }, () => Array(m + n).fill(false)),
    );
    const dirs = [1, 0, 1];

    const dfs = (i: number, j: number, k: number): boolean => {
        if (vis[i][j][k]) {
            return false;
        }

        vis[i][j][k] = true;
        k += grid[i][j] === '(' ? 1 : -1;

        if (k < 0 || k > m - i + n - j) {
            return false;
        }

        if (i === m - 1 && j === n - 1) {
            return k === 0;
        }

        for (let d = 0; d < 2; ++d) {
            const x = i + dirs[d],
                y = j + dirs[d + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && dfs(x, y, k)) {
                return true;
            }
        }

        return false;
    };

    return dfs(0, 0, 0);
}

Comments