2219. Maximum Sum Score of Array π
Description
You are given a 0-indexed integer array nums
of length n
.
The sum score of nums
at an index i
where 0 <= i < n
is the maximum of:
- The sum of the first
i + 1
elements ofnums
. - The sum of the last
n - i
elements ofnums
.
Return the maximum sum score of nums
at any index.
Example 1:
Input: nums = [4,3,-2,5] Output: 10 Explanation: The sum score at index 0 is max(4, 4 + 3 + -2 + 5) = max(4, 10) = 10. The sum score at index 1 is max(4 + 3, 3 + -2 + 5) = max(7, 6) = 7. The sum score at index 2 is max(4 + 3 + -2, -2 + 5) = max(5, 3) = 5. The sum score at index 3 is max(4 + 3 + -2 + 5, 5) = max(10, 5) = 10. The maximum sum score of nums is 10.
Example 2:
Input: nums = [-3,-5] Output: -3 Explanation: The sum score at index 0 is max(-3, -3 + -5) = max(-3, -8) = -3. The sum score at index 1 is max(-3 + -5, -5) = max(-8, -5) = -5. The maximum sum score of nums is -3.
Constraints:
n == nums.length
1 <= n <= 105
-105 <= nums[i] <= 105
Solutions
Solution 1: Prefix Sum
We can use two variables $l$ and $r$ to represent the prefix sum and suffix sum of the array, respectively. Initially, $l = 0$ and $r = \sum_{i=0}^{n-1} \textit{nums}[i]$.
Next, we traverse the array $\textit{nums}$. For each element $x$, we add $x$ to $l$ and update the answer $\textit{ans} = \max(\textit{ans}, l, r)$, then subtract $x$ from $r$.
After the traversal, return the answer $\textit{ans}$.
The time complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|