2057. Smallest Index With Equal Value
Description
Given a 0-indexed integer array nums
, return the smallest index i
of nums
such that i mod 10 == nums[i]
, or -1
if such index does not exist.
x mod y
denotes the remainder when x
is divided by y
.
Example 1:
Input: nums = [0,1,2] Output: 0 Explanation: i=0: 0 mod 10 = 0 == nums[0]. i=1: 1 mod 10 = 1 == nums[1]. i=2: 2 mod 10 = 2 == nums[2]. All indices have i mod 10 == nums[i], so we return the smallest index 0.
Example 2:
Input: nums = [4,3,2,1] Output: 2 Explanation: i=0: 0 mod 10 = 0 != nums[0]. i=1: 1 mod 10 = 1 != nums[1]. i=2: 2 mod 10 = 2 == nums[2]. i=3: 3 mod 10 = 3 != nums[3]. 2 is the only index which has i mod 10 == nums[i].
Example 3:
Input: nums = [1,2,3,4,5,6,7,8,9,0] Output: -1 Explanation: No index satisfies i mod 10 == nums[i].
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 9
Solutions
Solution 1: Traversal
We directly traverse the array. For each index $i$, we check if it satisfies $i \bmod 10 = \textit{nums}[i]$. If it does, we return the current index $i$.
If we traverse the entire array and do not find a satisfying index, we return $-1$.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
1 2 3 4 5 6 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 |
|