2006. Count Number of Pairs With Absolute Difference K
Description
Given an integer array nums
and an integer k
, return the number of pairs (i, j)
where i < j
such that |nums[i] - nums[j]| == k
.
The value of |x|
is defined as:
x
ifx >= 0
.-x
ifx < 0
.
Example 1:
Input: nums = [1,2,2,1], k = 1 Output: 4 Explanation: The pairs with an absolute difference of 1 are: - [1,2,2,1] - [1,2,2,1] - [1,2,2,1] - [1,2,2,1]
Example 2:
Input: nums = [1,3], k = 3 Output: 0 Explanation: There are no pairs with an absolute difference of 3.
Example 3:
Input: nums = [3,2,1,5,4], k = 2 Output: 3 Explanation: The pairs with an absolute difference of 2 are: - [3,2,1,5,4] - [3,2,1,5,4] - [3,2,1,5,4]
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
1 <= k <= 99
Solutions
Solution 1: Brute Force Enumeration
We notice that the length of the array \(nums\) does not exceed \(200\), so we can enumerate all pairs \((i, j)\), where \(i < j\), and check if \(|nums[i] - nums[j]|\) equals \(k\). If it does, we increment the answer by one.
Finally, we return the answer.
The time complexity is \(O(n^2)\), and the space complexity is \(O(1)\). Here, \(n\) is the length of the array \(nums\).
1 2 3 4 5 6 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
Solution 2: Hash Table or Array
We can use a hash table or array to record the occurrence count of each number in the array \(nums\). Then, we enumerate each number \(x\) in the array \(nums\), and check if \(x + k\) and \(x - k\) are in the array \(nums\). If they are, we increment the answer by the sum of the occurrence counts of \(x + k\) and \(x - k\).
Finally, we return the answer.
The time complexity is \(O(n)\), and the space complexity is \(O(n)\). Here, \(n\) is the length of the array \(nums\).
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|